"모듈라 형식(modular forms)"의 두 판 사이의 차이
Pythagoras0 (토론 | 기여) |
Pythagoras0 (토론 | 기여) (→구조 정리) |
||
57번째 줄: | 57번째 줄: | ||
* 차원 생성 함수 | * 차원 생성 함수 | ||
$$ | $$ | ||
− | \sum_{k=0}^{\infty}\dim M_k=\frac{1}{\left(1-x^4\right)\left(1-x^{6}\right)}=1+x^4+x^6+x^8+x^{10}+2 x^{12}+x^{14}+2 x^{16}+2 x^{18}+2 x^{20}+\cdots | + | \sum_{k=0}^{\infty}\dim M_k x^k=\frac{1}{\left(1-x^4\right)\left(1-x^{6}\right)}=1+x^4+x^6+x^8+x^{10}+2 x^{12}+x^{14}+2 x^{16}+2 x^{18}+2 x^{20}+\cdots |
$$ | $$ | ||
− | * 가령 <math>\{E_6^2, \Delta | + | * 가령 <math>\{E_6^2, \Delta\}</math>는 $M_{12}$의 기저가 된다. 여기서 $\Delta=E_4^3-E_6^2$ |
− | |||
− | |||
==메모== | ==메모== |
2014년 7월 21일 (월) 14:25 판
개요
- 푸앵카레 상반평면에서 정의된 해석함수
- 모듈라 성질과 cusp에서의 푸리에전개를 가짐
- 정수론에서 많은 중요한 역할
기호
- $\mathbb{H}=\{\tau\in \mathbb{C}|\Im \tau>0\}$
- 모듈라 군(modular group) $\Gamma=SL(2, \mathbb Z) = \left \{ \left. \left ( \begin{array}{cc}a & b \\ c & d \end{array} \right )\right| a, b, c, d \in \mathbb Z,\ ad-bc = 1 \right \}$
- $\operatorname{PSL}(2,\mathbb{Z})=\operatorname{SL}(2,\mathbb{Z})/\{\pm I\}$ acts on $\mathbb{H}$ by
\[\tau\mapsto\frac{a\tau+b}{c\tau+d}\] for $\left ( \begin{array}{cc}a & b \\ c & d \end{array} \right )\in \operatorname{SL}(2,\mathbb{Z})$
- $SL(2, \mathbb Z)$ is generated by $S$ and $T$
\[S=\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix},T=\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \] \[S: \tau\mapsto -1/\tau,T: \tau\mapsto \tau+1\]
모듈라 형식
- def
A holomorphic function $f:\mathbb{H}\to \mathbb{C}$ is a modular form of weight $k$ (w.r.t. $SL(2, \mathbb Z)$) if
- \(f \left( \frac{ a\tau +b}{ c\tau + d} \right) = (c\tau +d)^{k} f(\tau)\)
- $f$ is "holomorphic at the cusp", i.e. it has a Fourier expansion of the following form
$$ f(\tau)=\sum_{n=0}^{\infty}c(n)e^{2\pi i n \tau} $$
예
\[\Delta(\tau)=q\prod_{n>0}(1-q^n)^{24}=q-24q+252q^2+\cdots\]
아이젠슈타인 급수
- 아이젠슈타인 급수(Eisenstein series)
- for an integer $k\geq 2$, define
$$ G_{2k}(\tau) : =\sum_{(m,n)\in \mathbb{Z}^2\backslash{(0,0)}}\frac{1}{(m+n\tau )^{2k}} $$
- Eisenstein series : normalization of $G_{2k}$
\[E_{2k}(\tau):=\frac{G_{2k}(\tau)}{2\zeta (2k)}= 1+\frac {2}{\zeta(1-2k)}\left(\sum_{n=1}^{\infty} \sigma_{2k-1}(n)q^{n} \right)\] where $\zeta$ denotes the Riemann zeta function and $\sigma_r(n)=\sum_{d|n}d^r$
- this is a modular form of weight $2k$
- for example
\[E_4(\tau)= 1+ 240\sum_{n=1}^\infty \sigma_3(n) q^{n}=1 + 240 q + 2160 q^2 + \cdots \] \[E_6(\tau)=1- 504\sum_{n=1}^\infty \sigma_5(n) q^{n}=1 - 504 q - 16632 q^2 - \cdots \]
구조 정리
- 정리
$M_k$ be the space of modular forms of weight $k$ and $M:=\bigoplus_{k\in \mathbb{Z}_{\geq 0}} M_k$. We have \[M=\mathbb{C}[E_4,E_6]\]
- 차원 생성 함수
$$ \sum_{k=0}^{\infty}\dim M_k x^k=\frac{1}{\left(1-x^4\right)\left(1-x^{6}\right)}=1+x^4+x^6+x^8+x^{10}+2 x^{12}+x^{14}+2 x^{16}+2 x^{18}+2 x^{20}+\cdots $$
- 가령 \(\{E_6^2, \Delta\}\)는 $M_{12}$의 기저가 된다. 여기서 $\Delta=E_4^3-E_6^2$
메모
\[d(\frac{az+b}{cz+d})=\frac{(acz+ad-acz-bc)}{(cz+d)^2}dz=(cz+d)^{-2}dz\]
- 마르틴 아티클러 (Martin Eichler)는 다음과 같은 말을 남김
There are five elementary arithmetical operations: addition, subtraction, multiplication, division, and… modular forms.
다섯개의 기본적인 산술적 연산이 있다 : 더하기, 빼기, 곱하기, 나누기, 그리고 ... 모듈라 형식.
역사
관련된 항목들
- 아이젠슈타인 급수(Eisenstein series)
- 판별식 (discriminant) 함수와 라마누잔의 타우 함수(tau function)
- 자코비 세타함수
- 격자의 세타함수
- 헤케 연산자(Hecke operator)
매스매티카 파일 및 계산 리소스
수학용어번역
- modular - 대한수학회 수학용어집
사전 형태의 자료
리뷰논문, 에세이, 강의노트
- Finch, Modular Forms on $SL_2(\mathbb{Z})$
- Vaughan, modular forms I, modular forms II