"클링겐-지겔 (Klingen-Siegel) 정리"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
Pythagoras0 (토론 | 기여) (→관련논문) |
Pythagoras0 (토론 | 기여) (→관련논문) |
||
15번째 줄: | 15번째 줄: | ||
* Beilinson, Alexander, Guido Kings, and Andrey Levin. ‘Topological Polylogarithms and $p$-Adic Interpolation of $L$-Values of Totally Real Fields’. arXiv:1410.4741 [math], 17 October 2014. http://arxiv.org/abs/1410.4741. | * Beilinson, Alexander, Guido Kings, and Andrey Levin. ‘Topological Polylogarithms and $p$-Adic Interpolation of $L$-Values of Totally Real Fields’. arXiv:1410.4741 [math], 17 October 2014. http://arxiv.org/abs/1410.4741. | ||
* Nori, Madhav V. "Some Eisenstein cohomology classes for the integral unimodular group." Proceedings of the International Congress of Mathematicians. Vol. 1. 1995. http://www.mathunion.org/ICM/ICM1994.1/Main/icm1994.1.0690.0696.ocr.pdf | * Nori, Madhav V. "Some Eisenstein cohomology classes for the integral unimodular group." Proceedings of the International Congress of Mathematicians. Vol. 1. 1995. http://www.mathunion.org/ICM/ICM1994.1/Main/icm1994.1.0690.0696.ocr.pdf | ||
+ | * Sczech, Robert. ‘Eisenstein Group Cocycles for GL N and Values ofL-Functions’. Inventiones Mathematicae 113, no. 1 (1 December 1993): 581–616. doi:10.1007/BF01244319. | ||
==사전 형태의 자료== | ==사전 형태의 자료== | ||
* http://planetmath.org/SiegelKlingenTheorem.html | * http://planetmath.org/SiegelKlingenTheorem.html |
2014년 10월 20일 (월) 01:05 판
개요
- F : totally real 수체
- \([F: \mathbb{Q}]=n\)
- $m>0$일 때, 다음을 만족하는 적당한 유리수 \(r(m)\in \mathbb{Q}\)가 존재한다
\[\zeta_{F}(2m)=r(m)\frac{\pi^{2mn}}{\sqrt{|d_{F}|}}\]
수학용어번역
관련논문
- Beilinson, Alexander, Guido Kings, and Andrey Levin. ‘Topological Polylogarithms and $p$-Adic Interpolation of $L$-Values of Totally Real Fields’. arXiv:1410.4741 [math], 17 October 2014. http://arxiv.org/abs/1410.4741.
- Nori, Madhav V. "Some Eisenstein cohomology classes for the integral unimodular group." Proceedings of the International Congress of Mathematicians. Vol. 1. 1995. http://www.mathunion.org/ICM/ICM1994.1/Main/icm1994.1.0690.0696.ocr.pdf
- Sczech, Robert. ‘Eisenstein Group Cocycles for GL N and Values ofL-Functions’. Inventiones Mathematicae 113, no. 1 (1 December 1993): 581–616. doi:10.1007/BF01244319.