"클루스터만 합"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
Pythagoras0 (토론 | 기여) (새 문서: ==개요== * 모듈라 형식의 푸리에 계수를 estimate 하기 위한 개념 * $a,b\in \mathbb{Z}$와 소수 $p$에 대하여 :<math>K(a,b;p)=\sum_{1\leq x\leq p-1}e^{2i\pi (ax+...) |
Pythagoras0 (토론 | 기여) |
||
18번째 줄: | 18번째 줄: | ||
==사전 형태의 자료== | ==사전 형태의 자료== | ||
* http://en.wikipedia.org/wiki/Kloosterman_sum | * http://en.wikipedia.org/wiki/Kloosterman_sum | ||
+ | |||
+ | |||
+ | ==관련논문== | ||
+ | * Burkhardt, Paula, Alice Zhuo-Yu Chan, Gabriel Currier, Stephan Ramon Garcia, Florian Luca, and Hong Suh. ‘Visual Properties of Generalized Kloosterman Sums’. arXiv:1505.00018 [math], 30 April 2015. http://arxiv.org/abs/1505.00018. | ||
[[분류:정수론]] | [[분류:정수론]] |
2015년 5월 3일 (일) 18:02 판
개요
- 모듈라 형식의 푸리에 계수를 estimate 하기 위한 개념
- $a,b\in \mathbb{Z}$와 소수 $p$에 대하여
\[K(a,b;p)=\sum_{1\leq x\leq p-1}e^{2i\pi (ax+b\bar{x})/p},\quad\text{where}\quad x\bar{x}\equiv 1\text{ mod } p\]
- 더 일반적으로 $a,b,m\in \mathbb{Z}$에 대하여
\[K(a,b;m)=\sum_{1\leq x\leq m-1,\ gcd(x,m)=1 } e^{2\pi i (ax+b\bar{x})/m}, \quad\text{where}\quad x\bar{x}\equiv 1\text{ mod } m\]
메모
- http://blogs.ethz.ch/kowalski/2010/02/26/the-fourth-moment-of-kloosterman-sums/
- Kloosterman, H. D. On the representation of numbers in the form ax² + by² + cz² + dt², Acta Mathematica 49 (1926), pp. 407-464
관련된 항목들
사전 형태의 자료
관련논문
- Burkhardt, Paula, Alice Zhuo-Yu Chan, Gabriel Currier, Stephan Ramon Garcia, Florian Luca, and Hong Suh. ‘Visual Properties of Generalized Kloosterman Sums’. arXiv:1505.00018 [math], 30 April 2015. http://arxiv.org/abs/1505.00018.