"콕세터 군에서의 축약 표현"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
Pythagoras0 (토론 | 기여) |
Pythagoras0 (토론 | 기여) (→관련논문) |
||
8번째 줄: | 8번째 줄: | ||
* Denoncourt, Hugh. “Some Combinatorial Models for Reduced Expressions in Coxeter Groups.” arXiv:1104.3533 [math], April 18, 2011. http://arxiv.org/abs/1104.3533. | * Denoncourt, Hugh. “Some Combinatorial Models for Reduced Expressions in Coxeter Groups.” arXiv:1104.3533 [math], April 18, 2011. http://arxiv.org/abs/1104.3533. | ||
* Stembridge, John. “Some Combinatorial Aspects of Reduced Words in Finite Coxeter Groups.” Transactions of the American Mathematical Society 349, no. 4 (1997): 1285–1332. doi:10.1090/S0002-9947-97-01805-9. | * Stembridge, John. “Some Combinatorial Aspects of Reduced Words in Finite Coxeter Groups.” Transactions of the American Mathematical Society 349, no. 4 (1997): 1285–1332. doi:10.1090/S0002-9947-97-01805-9. | ||
+ | * Winkel, Rudolf. “Schubert Functions and the Number of Reduced Words of Permutations.” Séminaire Lotharingien de Combinatoire [electronic Only] 39 (1997). https://eudml.org/doc/119309. | ||
+ | * Eriksson, Kimmo. “Reduced Words in Affine Coxeter Groups.” Discrete Mathematics 157, no. 1–3 (October 1, 1996): 127–46. doi:10.1016/S0012-365X(96)83011-1. | ||
+ | * Winkel, Rudolf. "A combinatorial bijection between standard Young tableaux and reduced words of Grassmannian permutations." Seminaire Lotharingien et Combinatoire, B36h (1996). | ||
* Brink, Brigitte, and Robert B. Howlett. “A Finiteness Property an an Automatic Structure for Coxeter Groups.” Mathematische Annalen 296, no. 1 (December 1993): 179–90. doi:10.1007/BF01445101. | * Brink, Brigitte, and Robert B. Howlett. “A Finiteness Property an an Automatic Structure for Coxeter Groups.” Mathematische Annalen 296, no. 1 (December 1993): 179–90. doi:10.1007/BF01445101. | ||
+ | * Stanley, Richard P. “On the Number of Reduced Decompositions of Elements of Coxeter Groups.” European Journal of Combinatorics 5, no. 4 (December 1984): 359–72. doi:10.1016/S0195-6698(84)80039-6. |
2015년 8월 9일 (일) 23:13 판
매스매티카 파일 및 계산 리소스
- https://drive.google.com/file/d/0B8XXo8Tve1cxYnFoZkllMC0xb00/view
- http://www.liegroups.org/coxeter/coxeter3/english/normal_forms.html
관련논문
- Shi, Jian-yi. "The reduced expressions in a Coxeter system with a strictly complete Coxeter graph." Advances in Mathematics 272 (2015): 579-597.
- Denoncourt, Hugh. “Some Combinatorial Models for Reduced Expressions in Coxeter Groups.” arXiv:1104.3533 [math], April 18, 2011. http://arxiv.org/abs/1104.3533.
- Stembridge, John. “Some Combinatorial Aspects of Reduced Words in Finite Coxeter Groups.” Transactions of the American Mathematical Society 349, no. 4 (1997): 1285–1332. doi:10.1090/S0002-9947-97-01805-9.
- Winkel, Rudolf. “Schubert Functions and the Number of Reduced Words of Permutations.” Séminaire Lotharingien de Combinatoire [electronic Only] 39 (1997). https://eudml.org/doc/119309.
- Eriksson, Kimmo. “Reduced Words in Affine Coxeter Groups.” Discrete Mathematics 157, no. 1–3 (October 1, 1996): 127–46. doi:10.1016/S0012-365X(96)83011-1.
- Winkel, Rudolf. "A combinatorial bijection between standard Young tableaux and reduced words of Grassmannian permutations." Seminaire Lotharingien et Combinatoire, B36h (1996).
- Brink, Brigitte, and Robert B. Howlett. “A Finiteness Property an an Automatic Structure for Coxeter Groups.” Mathematische Annalen 296, no. 1 (December 1993): 179–90. doi:10.1007/BF01445101.
- Stanley, Richard P. “On the Number of Reduced Decompositions of Elements of Coxeter Groups.” European Journal of Combinatorics 5, no. 4 (December 1984): 359–72. doi:10.1016/S0195-6698(84)80039-6.