"콕세터 군의 표현론"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
Pythagoras0 (토론 | 기여) (→관련논문s) |
Pythagoras0 (토론 | 기여) (→관련논문) |
||
8번째 줄: | 8번째 줄: | ||
==관련논문== | ==관련논문== | ||
+ | * Stembridge, John. “Explicit Matrices for Irreducible Representations of Weyl Groups.” Representation Theory of the American Mathematical Society 8, no. 11 (2004): 267–89. doi:10.1090/S1088-4165-04-00236-5. | ||
* Concini, Corrado de, and Claudio Procesi. “Symmetric Functions, Conjugacy Classes and the Flag Variety.” Inventiones Mathematicae 64, no. 2 (June 1981): 203–19. doi:10.1007/BF01389168. | * Concini, Corrado de, and Claudio Procesi. “Symmetric Functions, Conjugacy Classes and the Flag Variety.” Inventiones Mathematicae 64, no. 2 (June 1981): 203–19. doi:10.1007/BF01389168. | ||
* Springer, T. A. “A Construction of Representations of Weyl Groups.” Inventiones Mathematicae 44, no. 3 (October 1978): 279–93. doi:10.1007/BF01403165. | * Springer, T. A. “A Construction of Representations of Weyl Groups.” Inventiones Mathematicae 44, no. 3 (October 1978): 279–93. doi:10.1007/BF01403165. | ||
* Benard, Mark. “On the Schur Indices of Characters of the Exceptional Weyl Groups.” Annals of Mathematics 94, no. 1 (1971): 89–107. doi:10.2307/1970736. | * Benard, Mark. “On the Schur Indices of Characters of the Exceptional Weyl Groups.” Annals of Mathematics 94, no. 1 (1971): 89–107. doi:10.2307/1970736. |
2016년 1월 28일 (목) 06:31 판
메모
사전 형태의 자료
관련논문
- Stembridge, John. “Explicit Matrices for Irreducible Representations of Weyl Groups.” Representation Theory of the American Mathematical Society 8, no. 11 (2004): 267–89. doi:10.1090/S1088-4165-04-00236-5.
- Concini, Corrado de, and Claudio Procesi. “Symmetric Functions, Conjugacy Classes and the Flag Variety.” Inventiones Mathematicae 64, no. 2 (June 1981): 203–19. doi:10.1007/BF01389168.
- Springer, T. A. “A Construction of Representations of Weyl Groups.” Inventiones Mathematicae 44, no. 3 (October 1978): 279–93. doi:10.1007/BF01403165.
- Benard, Mark. “On the Schur Indices of Characters of the Exceptional Weyl Groups.” Annals of Mathematics 94, no. 1 (1971): 89–107. doi:10.2307/1970736.