"프로듀스 X 101 투표 조작 논란"의 두 판 사이의 차이
Pythagoras0 (토론 | 기여) |
Pythagoras0 (토론 | 기여) (→개요) |
||
3번째 줄: | 3번째 줄: | ||
* 조작 논란의 근거는 득표수와 관련된 우연으로 보기 힘든 여러 현상들이다. | * 조작 논란의 근거는 득표수와 관련된 우연으로 보기 힘든 여러 현상들이다. | ||
* 여러 번의 투표 결과를 득표수 그대로 더하지 않고, 적당히 가중치를 주어 합산하는 과정이 있었다면, 위에서 발견된 현상들은 대체로 설명이 가능하다. | * 여러 번의 투표 결과를 득표수 그대로 더하지 않고, 적당히 가중치를 주어 합산하는 과정이 있었다면, 위에서 발견된 현상들은 대체로 설명이 가능하다. | ||
− | * 가령 네번의 투표가 | + | * 가령 네번의 투표가 있었고, 각 투표가 예를 들어 모두 25%만큼 기여하도록 해야 한다면, 득표결과에 적당한 수를 곱하고 반올림하는 과정을 거쳤을 수도 있다. |
* 7월 24일 엠넷이 내놓은 "득표수로 순위를 집계한 뒤 득표율로 계산해 소수점 둘째 자리로 반올림하고 이를 다시 득표수로 환산했다"는 해명은 따라서 납득할만하다. | * 7월 24일 엠넷이 내놓은 "득표수로 순위를 집계한 뒤 득표율로 계산해 소수점 둘째 자리로 반올림하고 이를 다시 득표수로 환산했다"는 해명은 따라서 납득할만하다. | ||
* 단, 이 글은 투표 결과에 어떤 조작도 없었음을 증명하지는 않는다 | * 단, 이 글은 투표 결과에 어떤 조작도 없었음을 증명하지는 않는다 |
2019년 7월 24일 (수) 04:58 판
개요
- 프로듀스 101 X 투표 조작 논란이 있다.
- 조작 논란의 근거는 득표수와 관련된 우연으로 보기 힘든 여러 현상들이다.
- 여러 번의 투표 결과를 득표수 그대로 더하지 않고, 적당히 가중치를 주어 합산하는 과정이 있었다면, 위에서 발견된 현상들은 대체로 설명이 가능하다.
- 가령 네번의 투표가 있었고, 각 투표가 예를 들어 모두 25%만큼 기여하도록 해야 한다면, 득표결과에 적당한 수를 곱하고 반올림하는 과정을 거쳤을 수도 있다.
- 7월 24일 엠넷이 내놓은 "득표수로 순위를 집계한 뒤 득표율로 계산해 소수점 둘째 자리로 반올림하고 이를 다시 득표수로 환산했다"는 해명은 따라서 납득할만하다.
- 단, 이 글은 투표 결과에 어떤 조작도 없었음을 증명하지는 않는다
설명
득표수와 관련된 많은 현상을 설명할 수 있는 하나의 수학적 명제가 있다.
마스터 정리
- 정리
0보다 큰 실수 $\alpha$가 주어져 있고, $\alpha$의 정수부분을 $f$라 하자. 임의의 자연수 $n$에 대하여, $n\alpha$를 반올림해서 얻어지는 자연수 $m$는 $f$의 배수와 $(f+1)$의 배수의 합으로 표현된다.
- 예
- $\alpha=7494.442$
- $f=7494$
다음과 같은 선택을 해보자.
- $n=178$
- $n\alpha=1334010.676$
그러면 $n\alpha$를 반올림하여, $m=1334011$이고 $m=1334011 = 99 \times 7494 + 79 \times 7495$
또 다른 예를 들자면,
- $n=102$
- $n\alpha=764433.084$
그러면 $n\alpha$를 반올림하여, $m=764433$이고 $m=764433 = 57 \times 7494 + 45 \times 7495$
- 예
- $\alpha=5.2$
- $f=5$
- $n=3$
- $n\alpha=15.6$
이 때, $m=16$이고, $16 = 2\times 5 + 1 \times 6$
프듀101 X 득표 테이블
이 글 https://gall.dcinside.com/board/view/?id=producex&no=2998354 에서 지적되었듯이, 프듀의 득표 테이블은 $\alpha=7494.442$에 적당한 자연수 $n$를 곱한 다음 반올림하여 얻어진 것과 12위 딱 한 곳만 제외하고 모두 같다. 12위의 표는 오타로 보는 것이 맞을 것이다. 맨 오른쪽에는 위에서 설명한 정리에서 처럼 7494와 7495의 배수의 합으로 이 수를 나타낸 것이다.
\begin{array}{c|cc|c} \text{} & \text{n} & \text{round} (n \alpha ) & \text{} \\ \hline 1 & 178 & 1334011 & 99*7494+79*7495 \\ 2 & 174 & 1304033 & 97*7494+77*7495 \\ 3 & 144 & 1079200 & 80*7494+64*7495 \\ 4 & 140 & 1049222 & 78*7494+62*7495 \\ 5 & 124 & 929311 & 69*7494+55*7495 \\ 6 & 110 & 824389 & 61*7494+49*7495 \\ 7 & 106 & 794411 & 59*7494+47*7495 \\ 8 & 102 & 764433 & 57*7494+45*7495 \\ 9 & 101 & 756939 & 56*7494+45*7495 \\ 10 & 100 & 749444 & 56*7494+44*7495 \\ 11 & 96 & 719466 & 54*7494+42*7495 \\ 12 & 94 & 704478 & 52*7494+42*7495 \\ 13 & 92 & 689489 & 51*7494+41*7495 \\ 14 & 90 & 674500 & 50*7494+40*7495 \\ 15 & 74 & 554589 & 41*7494+33*7495 \\ 16 & 64 & 479644 & 36*7494+28*7495 \\ 17 & 63 & 472150 & 35*7494+28*7495 \\ 18 & 62 & 464655 & 35*7494+27*7495 \\ 19 & 48 & 359733 & 27*7494+21*7495 \\ 20 & 38 & 284789 & 21*7494+17*7495 \\ \end{array}
토니의 득표수와 관련된 미스테리
20위 토니와 18위의 득표수의 합은 $284789 + 464655=749444$로 10위의 득표수와 같다. 일반적으로 7494와 7495의 배수의 합으로 표현되는 두 수의 합도 역시 7494와 7495의 배수의 합으로 표현가능하다. 대수적으로 표현하면 다음과 같다 :
$$ (7494a+7495b)+(7494c+7495d) = 7494(a+c)+7495(b+d). $$
따라서 둘의 득표수를 더해서 다른 사람의 득표가 나오는 것도 일어날 수 있는 일이 일어난 것이다. 꼭 20등 토니가 아니더라도 6등과 16등의 표를 더해 2등의 표가 나오는 일도 발생했다.
아래의 표는 a등의 표와 b등의 표를 더했을 때, c등의 표가 나온 경우를 모두 나열한 것이다.
\begin{array}{cc|c} a & b & c \\ \hline 4 & 20 & 1 \\ 6 & 16 & 2 \\ 7 & 20 & 3 \\ 8 & 20 & 4 \\ 10 & 15 & 2 \\ 13 & 19 & 4 \\ 16 & 20 & 8 \\ 17 & 20 & 9 \\ 18 & 20 & 10 \\ 19 & 19 & 11 \\ \end{array}
윗순위와의 표차
1위와 2위의 표차이는 29978이다. 이 수는 7494와 7495의 배수의 합으로 표현되는 두 수의 차이이므로, 역시 7494와 7495의 배수의 합으로 표현가능하다. 대수적으로 표현하면 다음과 같다 :
$$ (7494a+7495b)-(7494c+7495d) = 7494(a-c)+7495(b-d). $$
표는 다음과 같다.
\begin{array}{ccc}
\text{} & n & \text{round} (n \alpha ) \\
\hline
1 & 29978 & 2*7494+2*7495 \\
2 & 224833 & 17*7494+13*7495 \\
3 & 29978 & 2*7494+2*7495 \\
4 & 119911 & 9*7494+7*7495 \\
5 & 104922 & 8*7494+6*7495 \\
6 & 29978 & 2*7494+2*7495 \\
7 & 29978 & 2*7494+2*7495 \\
8 & 7494 & 1*7494+0*7495 \\
9 & 7495 & 0*7494+1*7495 \\
10 & 29978 & 2*7494+2*7495 \\
11 & 14988 & 2*7494+0*7495 \\
12 & 14989 & 1*7494+1*7495 \\
13 & 14989 & 1*7494+1*7495 \\
14 & 119911 & 9*7494+7*7495 \\
15 & 74945 & 5*7494+5*7495 \\
16 & 7494 & 1*7494+0*7495 \\
17 & 7495 & 0*7494+1*7495 \\
18 & 104922 & 8*7494+6*7495 \\
19 & 74944 & 6*7494+4*7495 \\
\end{array}
따라서 이 현상도 역시 일어날 수 있는 일이 일어난 것이다.