"BGG resolution"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
(피타고라스님이 이 페이지의 이름을 BGG category and BGG resolution로 바꾸었습니다.)
1번째 줄: 1번째 줄:
 +
<h5>example of BGG resolution : sl_2</h5>
  
 +
* <math>W_{\lambda}</math> : irreducible highest weight module
 +
* <math>V_{\lambda}</math> : Verma modules<br>
 +
** note that the Verma modules are free modules of rank 1 over <math>\mathbb{C}[F]</math>
 +
* <math>\lambda ,-2+\lambda ,\cdots, -\lambda, -\lambda-2,\cdots</math>
 +
* <math>W_{\lambda}=V_{\lambda}/V_{-\lambda-2}</math>
 +
*  BGG resolution<br><math>0\to V_{-\lambda-2}\to V_{\lambda}\to W\to 0</math><br>
 +
* number of modules = 2 (=order of Weyl group in general)
 +
*  character of W = alternating sum of characters of Verma modules<br><math>\chi_{W_{\lambda}}=\chi_{V_{\lambda}}-\chi_{V_{-\lambda-2}}=\frac{q^{\lambda}}{1-q^{-2}}-\frac{q^{-\lambda-2}}{1-q^{-2}}</math><br>
 +
*  comparison with [[Weyl-Kac character formula]]<br><math>ch(W_{\lambda})=\frac{\sum_{w\in W} (-1)^{\ell(w)}w(e^{\lambda+\rho}) }{e^{\rho}\prod_{\alpha>0}(1-e^{-\alpha})}}=\frac{q^{\lambda+1}-q^{-\lambda-1}}{q^{1}(1-q^{-2})}</math><br> where I used <math>\rho=1,\alpha=2</math> and <math>w(\lambda+\rho)=-\lambda-\rho</math><br>
 +
 +
 
 +
 +
 
 +
 +
<h5>maps between Verma modules</h5>
 +
 +
*  2 conditions to have non-zero homomorphisms <math>V_{\lambda}\to V_{\mu}</math> between two Verma modules<br>
 +
** <math>\lambda+\rho, \mu+\rho</math> are in the same orbit of Weyl group
 +
** <math>V_{\lambda}\leq V_{\mu}</math>, i.e. <math>\lambda = \mu -\sum \alpha</math>, where the sum is over some positive roots.
 +
*  example in SL2<br>
 +
** <math>\lambda = \mu -2n</math>, <math>n=0,1,2,\cdots</math>
 +
** <math>(\lambda+1)^2 = (\mu+1)^2</math>
 +
 +
 
 +
 +
 
 +
 +
<h5>books</h5>
 +
 +
* James E. Humphreys, Representations of Semisimple Lie Algebras in the BGG Category O, Grad. Stud. Math., 94, Amer. Math. Soc., Providence, RI, 2008.

2012년 8월 26일 (일) 10:10 판

example of BGG resolution : sl_2
  • \(W_{\lambda}\) : irreducible highest weight module
  • \(V_{\lambda}\) : Verma modules
    • note that the Verma modules are free modules of rank 1 over \(\mathbb{C}[F]\)
  • \(\lambda ,-2+\lambda ,\cdots, -\lambda, -\lambda-2,\cdots\)
  • \(W_{\lambda}=V_{\lambda}/V_{-\lambda-2}\)
  • BGG resolution
    \(0\to V_{-\lambda-2}\to V_{\lambda}\to W\to 0\)
  • number of modules = 2 (=order of Weyl group in general)
  • character of W = alternating sum of characters of Verma modules
    \(\chi_{W_{\lambda}}=\chi_{V_{\lambda}}-\chi_{V_{-\lambda-2}}=\frac{q^{\lambda}}{1-q^{-2}}-\frac{q^{-\lambda-2}}{1-q^{-2}}\)
  • comparison with Weyl-Kac character formula
    \(ch(W_{\lambda})=\frac{\sum_{w\in W} (-1)^{\ell(w)}w(e^{\lambda+\rho}) }{e^{\rho}\prod_{\alpha>0}(1-e^{-\alpha})}}=\frac{q^{\lambda+1}-q^{-\lambda-1}}{q^{1}(1-q^{-2})}\)
    where I used \(\rho=1,\alpha=2\) and \(w(\lambda+\rho)=-\lambda-\rho\)

 

 

maps between Verma modules
  • 2 conditions to have non-zero homomorphisms \(V_{\lambda}\to V_{\mu}\) between two Verma modules
    • \(\lambda+\rho, \mu+\rho\) are in the same orbit of Weyl group
    • \(V_{\lambda}\leq V_{\mu}\), i.e. \(\lambda = \mu -\sum \alpha\), where the sum is over some positive roots.
  • example in SL2
    • \(\lambda = \mu -2n\), \(n=0,1,2,\cdots\)
    • \((\lambda+1)^2 = (\mu+1)^2\)

 

 

books
  • James E. Humphreys, Representations of Semisimple Lie Algebras in the BGG Category O, Grad. Stud. Math., 94, Amer. Math. Soc., Providence, RI, 2008.