"BGG resolution"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
imported>Pythagoras0 잔글 (찾아 바꾸기 – “<h5>” 문자열을 “==” 문자열로) |
imported>Pythagoras0 잔글 (찾아 바꾸기 – “</h5>” 문자열을 “==” 문자열로) |
||
1번째 줄: | 1번째 줄: | ||
− | ==example of BGG resolution : sl_2 | + | ==example of BGG resolution : sl_2== |
* <math>W_{\lambda}</math> : irreducible highest weight module | * <math>W_{\lambda}</math> : irreducible highest weight module | ||
15번째 줄: | 15번째 줄: | ||
− | ==maps between Verma modules | + | ==maps between Verma modules== |
* 2 conditions to have non-zero homomorphisms <math>V_{\lambda}\to V_{\mu}</math> between two Verma modules<br> | * 2 conditions to have non-zero homomorphisms <math>V_{\lambda}\to V_{\mu}</math> between two Verma modules<br> | ||
28번째 줄: | 28번째 줄: | ||
− | ==books | + | ==books== |
* James E. Humphreys, Representations of Semisimple Lie Algebras in the BGG Category O, Grad. Stud. Math., 94, Amer. Math. Soc., Providence, RI, 2008. | * James E. Humphreys, Representations of Semisimple Lie Algebras in the BGG Category O, Grad. Stud. Math., 94, Amer. Math. Soc., Providence, RI, 2008. |
2012년 10월 28일 (일) 15:22 판
example of BGG resolution : sl_2
- \(W_{\lambda}\) : irreducible highest weight module
- \(V_{\lambda}\) : Verma modules
- note that the Verma modules are free modules of rank 1 over \(\mathbb{C}[F]\)
- \(\lambda ,-2+\lambda ,\cdots, -\lambda, -\lambda-2,\cdots\)
- \(W_{\lambda}=V_{\lambda}/V_{-\lambda-2}\)
- BGG resolution
\(0\to V_{-\lambda-2}\to V_{\lambda}\to W\to 0\) - number of modules = 2 (=order of Weyl group in general)
- character of W = alternating sum of characters of Verma modules
\(\chi_{W_{\lambda}}=\chi_{V_{\lambda}}-\chi_{V_{-\lambda-2}}=\frac{q^{\lambda}}{1-q^{-2}}-\frac{q^{-\lambda-2}}{1-q^{-2}}\) - comparison with Weyl-Kac character formula
\(ch(W_{\lambda})=\frac{\sum_{w\in W} (-1)^{\ell(w)}w(e^{\lambda+\rho}) }{e^{\rho}\prod_{\alpha>0}(1-e^{-\alpha})}}=\frac{q^{\lambda+1}-q^{-\lambda-1}}{q^{1}(1-q^{-2})}\)
where I used \(\rho=1,\alpha=2\) and \(w(\lambda+\rho)=-\lambda-\rho\)
maps between Verma modules
- 2 conditions to have non-zero homomorphisms \(V_{\lambda}\to V_{\mu}\) between two Verma modules
- \(\lambda+\rho, \mu+\rho\) are in the same orbit of Weyl group
- \(V_{\lambda}\leq V_{\mu}\), i.e. \(\lambda = \mu -\sum \alpha\), where the sum is over some positive roots.
- example in SL2
- \(\lambda = \mu -2n\), \(n=0,1,2,\cdots\)
- \((\lambda+1)^2 = (\mu+1)^2\)
books
- James E. Humphreys, Representations of Semisimple Lie Algebras in the BGG Category O, Grad. Stud. Math., 94, Amer. Math. Soc., Providence, RI, 2008.