"Z k parafermion theory"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
imported>Pythagoras0
잔글 (찾아 바꾸기 – “<h5>” 문자열을 “==” 문자열로)
imported>Pythagoras0
잔글 (찾아 바꾸기 – “</h5>” 문자열을 “==” 문자열로)
1번째 줄: 1번째 줄:
==introduction</h5>
+
==introduction==
  
 
* parafermionic Hilbert space
 
* parafermionic Hilbert space
13번째 줄: 13번째 줄:
 
 
 
 
  
==<math>\mathbb{Z}_{n+1}</math> theory</h5>
+
==<math>\mathbb{Z}_{n+1}</math> theory==
  
 
*  central charge<br><math>\frac{2n}{n+3}</math><br>
 
*  central charge<br><math>\frac{2n}{n+3}</math><br>
23번째 줄: 23번째 줄:
 
 
 
 
  
==history</h5>
+
==history==
  
 
* http://www.google.com/search?hl=en&tbs=tl:1&q=
 
* http://www.google.com/search?hl=en&tbs=tl:1&q=
31번째 줄: 31번째 줄:
 
 
 
 
  
==related items</h5>
+
==related items==
  
 
* [[modular invariant partition functions|CFT on torus and modular invariant partition functions]]
 
* [[modular invariant partition functions|CFT on torus and modular invariant partition functions]]
43번째 줄: 43번째 줄:
 
 
 
 
  
<h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">encyclopedia</h5>
+
<h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">encyclopedia==
  
 
* http://en.wikipedia.org/wiki/
 
* http://en.wikipedia.org/wiki/
54번째 줄: 54번째 줄:
 
 
 
 
  
==books</h5>
+
==books==
  
 
 
 
 
67번째 줄: 67번째 줄:
 
 
 
 
  
==expositions</h5>
+
==expositions==
  
 
 
 
 
75번째 줄: 75번째 줄:
 
 
 
 
  
<h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">articles</h5>
+
<h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">articles==
  
 
* Keegan, Sinéad, and Werner Nahm. 2011. “Nahm’s conjecture and coset models.” <em>1103.4986</em> (March 25). http://arxiv.org/abs/1103.4986
 
* Keegan, Sinéad, and Werner Nahm. 2011. “Nahm’s conjecture and coset models.” <em>1103.4986</em> (March 25). http://arxiv.org/abs/1103.4986
102번째 줄: 102번째 줄:
 
 
 
 
  
==question and answers(Math Overflow)</h5>
+
==question and answers(Math Overflow)==
  
 
* http://mathoverflow.net/search?q=
 
* http://mathoverflow.net/search?q=
111번째 줄: 111번째 줄:
 
 
 
 
  
==blogs</h5>
+
==blogs==
  
 
*  구글 블로그 검색<br>
 
*  구글 블로그 검색<br>
122번째 줄: 122번째 줄:
 
 
 
 
  
==experts on the field</h5>
+
==experts on the field==
  
 
* http://arxiv.org/
 
* http://arxiv.org/
130번째 줄: 130번째 줄:
 
 
 
 
  
==links</h5>
+
==links==
  
 
* [http://detexify.kirelabs.org/classify.html Detexify2 - LaTeX symbol classifier]
 
* [http://detexify.kirelabs.org/classify.html Detexify2 - LaTeX symbol classifier]

2012년 10월 28일 (일) 15:11 판

introduction

  • parafermionic Hilbert space
  • defined by the algebra of parafermionic fields \(\psi_1\) and \(\psi _1^{\dagger }\) of dimension 1-1/k and central charge 2(k-1)/(k+2)
  • the highest-weight modules are parametrized by an integer (Dynkin label) l with \(0\leq l < k\)
  • \(\mathbb{Z}_k\) parafermion theory is known to be equivalent to the coset \(\hat{\text{su}}(2)_k/\hat{u}(1)\)
  • Kac and Petersen (1984) obtained expression for the parafermion characters
  • Lepowsky-Primc (1985) expression in fermionic form
  • third expression

 

 

\(\mathbb{Z}_{n+1}\) theory

  • central charge
    \(\frac{2n}{n+3}\)

 

 

 

history

 

 

related items

 

 

 

encyclopedia==    

books

 

 

 

expositions

 

 

 

articles==    

question and answers(Math Overflow)

 

 

blogs

 

 

experts on the field

 

 

links