"Z k parafermion theory"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
encyclopedia==
imported>Pythagoras0 잔글 (찾아 바꾸기 – “<h5>” 문자열을 “==” 문자열로) |
imported>Pythagoras0 잔글 (찾아 바꾸기 – “</h5>” 문자열을 “==” 문자열로) |
||
1번째 줄: | 1번째 줄: | ||
− | ==introduction | + | ==introduction== |
* parafermionic Hilbert space | * parafermionic Hilbert space | ||
13번째 줄: | 13번째 줄: | ||
− | ==<math>\mathbb{Z}_{n+1}</math> theory | + | ==<math>\mathbb{Z}_{n+1}</math> theory== |
* central charge<br><math>\frac{2n}{n+3}</math><br> | * central charge<br><math>\frac{2n}{n+3}</math><br> | ||
23번째 줄: | 23번째 줄: | ||
− | ==history | + | ==history== |
* http://www.google.com/search?hl=en&tbs=tl:1&q= | * http://www.google.com/search?hl=en&tbs=tl:1&q= | ||
31번째 줄: | 31번째 줄: | ||
− | ==related items | + | ==related items== |
* [[modular invariant partition functions|CFT on torus and modular invariant partition functions]] | * [[modular invariant partition functions|CFT on torus and modular invariant partition functions]] | ||
43번째 줄: | 43번째 줄: | ||
− | <h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">encyclopedia | + | <h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">encyclopedia== |
* http://en.wikipedia.org/wiki/ | * http://en.wikipedia.org/wiki/ | ||
54번째 줄: | 54번째 줄: | ||
− | ==books | + | ==books== |
67번째 줄: | 67번째 줄: | ||
− | ==expositions | + | ==expositions== |
75번째 줄: | 75번째 줄: | ||
− | <h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">articles | + | <h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">articles== |
* Keegan, Sinéad, and Werner Nahm. 2011. “Nahm’s conjecture and coset models.” <em>1103.4986</em> (March 25). http://arxiv.org/abs/1103.4986 | * Keegan, Sinéad, and Werner Nahm. 2011. “Nahm’s conjecture and coset models.” <em>1103.4986</em> (March 25). http://arxiv.org/abs/1103.4986 | ||
102번째 줄: | 102번째 줄: | ||
− | ==question and answers(Math Overflow) | + | ==question and answers(Math Overflow)== |
* http://mathoverflow.net/search?q= | * http://mathoverflow.net/search?q= | ||
111번째 줄: | 111번째 줄: | ||
− | ==blogs | + | ==blogs== |
* 구글 블로그 검색<br> | * 구글 블로그 검색<br> | ||
122번째 줄: | 122번째 줄: | ||
− | ==experts on the field | + | ==experts on the field== |
* http://arxiv.org/ | * http://arxiv.org/ | ||
130번째 줄: | 130번째 줄: | ||
− | ==links | + | ==links== |
* [http://detexify.kirelabs.org/classify.html Detexify2 - LaTeX symbol classifier] | * [http://detexify.kirelabs.org/classify.html Detexify2 - LaTeX symbol classifier] |
2012년 10월 28일 (일) 15:11 판
introduction
- parafermionic Hilbert space
- defined by the algebra of parafermionic fields \(\psi_1\) and \(\psi _1^{\dagger }\) of dimension 1-1/k and central charge 2(k-1)/(k+2)
- the highest-weight modules are parametrized by an integer (Dynkin label) l with \(0\leq l < k\)
- \(\mathbb{Z}_k\) parafermion theory is known to be equivalent to the coset \(\hat{\text{su}}(2)_k/\hat{u}(1)\)
- Kac and Petersen (1984) obtained expression for the parafermion characters
- Lepowsky-Primc (1985) expression in fermionic form
- third expression
\(\mathbb{Z}_{n+1}\) theory
- central charge
\(\frac{2n}{n+3}\)
history
encyclopedia==
- http://en.wikipedia.org/wiki/
- http://www.scholarpedia.org/
- http://www.proofwiki.org/wiki/
- Princeton companion to mathematics(Companion_to_Mathematics.pdf)
books
- 2010년 books and articles
- http://gigapedia.info/1/
- http://gigapedia.info/1/
- http://www.amazon.com/s/ref=nb_ss_gw?url=search-alias%3Dstripbooks&field-keywords=
expositions
articles==
- Keegan, Sinéad, and Werner Nahm. 2011. “Nahm’s conjecture and coset models.” 1103.4986 (March 25). http://arxiv.org/abs/1103.4986
- Fortin, J. -F, P. Mathieu와/과S. O Warnaar. 2006. “Characters of graded parafermion conformal field theory”. hep-th/0602248 (2월 23). [1]http://arxiv.org/abs/hep-th/0602248
- Conjugate Bailey pairs. From configuration sums and fractional-level string functions to Bailey's lemma.,Anne Schilling, S. Ole Warnaar, 1999
- Spinons and parafermions in fermion cosets
- D. C. Cabra, Lecture Notes in Physics, 1998, Volume 509/1998, 220-229
- Modular invariant partition functions for parafermionic field theories
- D. Gepner and Z. Qiu (1987), Nucl. Phys. B 285, 423.
- Infinite-dimensional Lie algebras, theta functions and modular forms.,Kac, V.G., Peterson, D.H., Adv. Math.53, 125 (1984)
- http://www.ams.org/mathscinet
- http://www.zentralblatt-math.org/zmath/en/
- http://arxiv.org/
- http://www.pdf-search.org/
- http://pythagoras0.springnote.com/
- http://math.berkeley.edu/~reb/papers/index.html
- http://dx.doi.org/10.1007/BFb0105250
question and answers(Math Overflow)
blogs
- 구글 블로그 검색
- http://ncatlab.org/nlab/show/HomePage
experts on the field
links
- Keegan, Sinéad, and Werner Nahm. 2011. “Nahm’s conjecture and coset models.” 1103.4986 (March 25). http://arxiv.org/abs/1103.4986
- Fortin, J. -F, P. Mathieu와/과S. O Warnaar. 2006. “Characters of graded parafermion conformal field theory”. hep-th/0602248 (2월 23). [1]http://arxiv.org/abs/hep-th/0602248
- Conjugate Bailey pairs. From configuration sums and fractional-level string functions to Bailey's lemma.,Anne Schilling, S. Ole Warnaar, 1999
- Spinons and parafermions in fermion cosets
- D. C. Cabra, Lecture Notes in Physics, 1998, Volume 509/1998, 220-229
- D. C. Cabra, Lecture Notes in Physics, 1998, Volume 509/1998, 220-229
- Modular invariant partition functions for parafermionic field theories
- D. Gepner and Z. Qiu (1987), Nucl. Phys. B 285, 423.
- Infinite-dimensional Lie algebras, theta functions and modular forms.,Kac, V.G., Peterson, D.H., Adv. Math.53, 125 (1984)
- http://www.ams.org/mathscinet
- http://www.zentralblatt-math.org/zmath/en/
- http://arxiv.org/
- http://www.pdf-search.org/
- http://pythagoras0.springnote.com/
- http://math.berkeley.edu/~reb/papers/index.html
- http://dx.doi.org/10.1007/BFb0105250
question and answers(Math Overflow)
blogs
- 구글 블로그 검색
- http://ncatlab.org/nlab/show/HomePage
experts on the field