"Z k parafermion theory"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
imported>Pythagoras0
잔글 (찾아 바꾸기 – “* Princeton companion to mathematics(Companion_to_Mathematics.pdf)” 문자열을 “” 문자열로)
imported>Pythagoras0
9번째 줄: 9번째 줄:
 
* third expression
 
* third expression
  
 
+
  
 
+
  
 
==<math>\mathbb{Z}_{n+1}</math> theory==
 
==<math>\mathbb{Z}_{n+1}</math> theory==
  
*  central charge<br><math>\frac{2n}{n+3}</math><br>
+
*  central charge<math>\frac{2n}{n+3}</math>
  
 
+
  
 
+
  
 
+
  
 
==history==
 
==history==
27번째 줄: 27번째 줄:
 
* http://www.google.com/search?hl=en&tbs=tl:1&q=
 
* http://www.google.com/search?hl=en&tbs=tl:1&q=
  
 
+
  
 
+
  
 
==related items==
 
==related items==
36번째 줄: 36번째 줄:
 
* [[Ising models]]
 
* [[Ising models]]
 
* [[3-states Potts model]]
 
* [[3-states Potts model]]
 
+
* [[Graded parafermion theory]]
 
+
 
 
 
 
 
 
 
 
 
 
==encyclopedia==
 
 
 
* http://en.wikipedia.org/wiki/
 
* http://www.scholarpedia.org/
 
* http://www.proofwiki.org/wiki/
 
 
 
 
 
 
 
 
 
 
 
 
 
==books==
 
 
 
 
 
 
 
* [[2010년 books and articles]]<br>
 
* http://gigapedia.info/1/
 
* http://gigapedia.info/1/
 
* http://www.amazon.com/s/ref=nb_ss_gw?url=search-alias%3Dstripbooks&field-keywords=
 
 
 
 
 
 
 
 
 
 
 
==expositions==
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
==articles==
 
==articles==
80번째 줄: 44번째 줄:
 
* Fortin, J. -F, P. Mathieu와/과S. O Warnaar. 2006. “Characters of graded parafermion conformal field theory”. <em>hep-th/0602248</em> (2월 23). [http://arxiv.org/abs/hep-th/0602248 ]http://arxiv.org/abs/hep-th/0602248
 
* Fortin, J. -F, P. Mathieu와/과S. O Warnaar. 2006. “Characters of graded parafermion conformal field theory”. <em>hep-th/0602248</em> (2월 23). [http://arxiv.org/abs/hep-th/0602248 ]http://arxiv.org/abs/hep-th/0602248
 
* [http://arxiv.org/abs/math/9906092 Conjugate Bailey pairs. From configuration sums and fractional-level string functions to Bailey's lemma.],Anne Schilling, S. Ole Warnaar, 1999
 
* [http://arxiv.org/abs/math/9906092 Conjugate Bailey pairs. From configuration sums and fractional-level string functions to Bailey's lemma.],Anne Schilling, S. Ole Warnaar, 1999
* [http://dx.doi.org/10.1007/BFb0105250 Spinons and parafermions in fermion cosets]<br>
+
* Cabra, D. C. 1998. “Spinons and Parafermions in Fermion Cosets.” In Supersymmetry and Quantum Field Theory, edited by Julius Wess and Vladimir P. Akulov, 220–229. Lecture Notes in Physics 509. Springer Berlin Heidelberg. http://link.springer.com/chapter/10.1007/BFb0105250.
**  D. C. Cabra, Lecture Notes in Physics, 1998, Volume 509/1998, 220-229<br>
+
* [http://dx.doi.org/10.1016/0370-2693%2889%2991194-5 Bosonization of ZN parafermions and su(2)N Kac -Moody algebra]
 
+
* Gepner, Doron, and Zongan Qiu. 1987. “Modular Invariant Partition Functions for Parafermionic Field Theories.” Nuclear Physics B 285: 423–453. doi:[http://dx.doi.org/10.1016/0550-3213%2887%2990348-8 10.1016/0550-3213(87)90348-8].
* [http://dx.doi.org/10.1016/0370-2693%2889%2991194-5 Bosonization of ZN parafermions and su(2)N Kac -Moody algebra]<br>
+
* Gepner, Doron. 1987. “New Conformal Field Theories Associated with Lie Algebras and Their Partition Functions.” Nuclear Physics B 290: 10–24. doi:[http://dx.doi.org/10.1016/0550-3213(87)90176-3 10.1016/0550-3213(87)90176-3].
 
+
* [http://dx.doi.org/10.1016/0001-8708%2884%2990032-X Infinite-dimensional Lie algebras, theta functions and modular forms.],Kac, V.G., Peterson, D.H., Adv. Math.53, 125 (1984)
* [http://dx.doi.org/10.1016/0550-3213%2887%2990348-8 Modular invariant partition functions for parafermionic field theories]<br>
 
** D. Gepner and Z. Qiu (1987), Nucl. Phys. B 285, 423.
 
 
 
* [http://dx.doi.org/10.1016/0001-8708%2884%2990032-X Infinite-dimensional Lie algebras, theta functions and modular forms.],Kac, V.G., Peterson, D.H., Adv. Math.53, 125 (1984)<br>
 
 
 
* http://www.ams.org/mathscinet
 
* http://www.zentralblatt-math.org/zmath/en/
 
* http://arxiv.org/
 
* http://www.pdf-search.org/
 
* http://pythagoras0.springnote.com/
 
* [http://math.berkeley.edu/%7Ereb/papers/index.html http://math.berkeley.edu/~reb/papers/index.html]
 
* http://dx.doi.org/10.1007/BFb0105250
 
 
 
 
 
 
 
 
 
 
 
==question and answers(Math Overflow)==
 
 
 
* http://mathoverflow.net/search?q=
 
* http://mathoverflow.net/search?q=
 
 
 
 
 
 
 
 
 
 
 
==blogs==
 
 
 
*  구글 블로그 검색<br>
 
**  http://blogsearch.google.com/blogsearch?q=<br>
 
** http://blogsearch.google.com/blogsearch?q=
 
* http://ncatlab.org/nlab/show/HomePage
 
 
 
 
 
 
 
 
 
 
 
==experts on the field==
 
 
 
* http://arxiv.org/
 
 
 
 
 
 
 
 
 
 
 
==links==
 
  
* [http://detexify.kirelabs.org/classify.html Detexify2 - LaTeX symbol classifier]
 
* [http://pythagoras0.springnote.com/pages/1947378 수식표현 안내]
 
* [http://www.research.att.com/%7Enjas/sequences/index.html The On-Line Encyclopedia of Integer Sequences]
 
* http://functions.wolfram.com/
 
 
[[분류:개인노트]]
 
[[분류:개인노트]]
 
[[분류:thesis]]
 
[[분류:thesis]]
 
[[분류:conformal field theory]]
 
[[분류:conformal field theory]]

2013년 7월 11일 (목) 04:44 판

introduction

  • parafermionic Hilbert space
  • defined by the algebra of parafermionic fields \(\psi_1\) and \(\psi _1^{\dagger }\) of dimension 1-1/k and central charge 2(k-1)/(k+2)
  • the highest-weight modules are parametrized by an integer (Dynkin label) l with \(0\leq l < k\)
  • \(\mathbb{Z}_k\) parafermion theory is known to be equivalent to the coset \(\hat{\text{su}}(2)_k/\hat{u}(1)\)
  • Kac and Petersen (1984) obtained expression for the parafermion characters
  • Lepowsky-Primc (1985) expression in fermionic form
  • third expression



\(\mathbb{Z}_{n+1}\) theory

  • central charge\(\frac{2n}{n+3}\)




history



related items


articles