"Z k parafermion theory"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
imported>Pythagoras0
imported>Pythagoras0
42번째 줄: 42번째 줄:
  
 
* Keegan, Sinéad, and Werner Nahm. 2011. “Nahm’s conjecture and coset models.” <em>1103.4986</em> (March 25). http://arxiv.org/abs/1103.4986
 
* Keegan, Sinéad, and Werner Nahm. 2011. “Nahm’s conjecture and coset models.” <em>1103.4986</em> (March 25). http://arxiv.org/abs/1103.4986
* Fortin, J. -F, P. Mathieu와/과S. O Warnaar. 2006. “Characters of graded parafermion conformal field theory”. <em>hep-th/0602248</em> (2월 23). [http://arxiv.org/abs/hep-th/0602248 ]http://arxiv.org/abs/hep-th/0602248
+
* Fortin, J.-F., P. Mathieu, and S. O. Warnaar. 2006. “Characters of Graded Parafermion Conformal Field Theory”. ArXiv e-print hep-th/0602248. http://arxiv.org/abs/hep-th/0602248.
 
* [http://arxiv.org/abs/math/9906092 Conjugate Bailey pairs. From configuration sums and fractional-level string functions to Bailey's lemma.],Anne Schilling, S. Ole Warnaar, 1999
 
* [http://arxiv.org/abs/math/9906092 Conjugate Bailey pairs. From configuration sums and fractional-level string functions to Bailey's lemma.],Anne Schilling, S. Ole Warnaar, 1999
 
* Cabra, D. C. 1998. “Spinons and Parafermions in Fermion Cosets.” In Supersymmetry and Quantum Field Theory, edited by Julius Wess and Vladimir P. Akulov, 220–229. Lecture Notes in Physics 509. Springer Berlin Heidelberg. http://link.springer.com/chapter/10.1007/BFb0105250.
 
* Cabra, D. C. 1998. “Spinons and Parafermions in Fermion Cosets.” In Supersymmetry and Quantum Field Theory, edited by Julius Wess and Vladimir P. Akulov, 220–229. Lecture Notes in Physics 509. Springer Berlin Heidelberg. http://link.springer.com/chapter/10.1007/BFb0105250.

2013년 7월 11일 (목) 05:17 판

introduction

  • parafermionic Hilbert space
  • defined by the algebra of parafermionic fields \(\psi_1\) and \(\psi _1^{\dagger }\) of dimension 1-1/k and central charge 2(k-1)/(k+2)
  • the highest-weight modules are parametrized by an integer (Dynkin label) l with \(0\leq l < k\)
  • \(\mathbb{Z}_k\) parafermion theory is known to be equivalent to the coset \(\hat{\text{su}}(2)_k/\hat{u}(1)\)
  • Kac and Peterson (1984) obtained expression for the parafermion characters
  • Lepowsky-Primc (1985) expression in fermionic form
  • third expression



\(\mathbb{Z}_{n+1}\) theory

  • central charge\(\frac{2n}{n+3}\)




history



related items


articles