"Z k parafermion theory"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
imported>Pythagoras0 |
imported>Pythagoras0 |
||
33번째 줄: | 33번째 줄: | ||
==articles== | ==articles== | ||
− | + | * Fendley, Paul. “Parafermionic Edge Zero Modes in Z_n-Invariant Spin Chains.” arXiv:1209.0472 [cond-Mat, Physics:hep-Th], September 3, 2012. http://arxiv.org/abs/1209.0472. | |
* Keegan, Sinéad, and Werner Nahm. 2011. “Nahm’s conjecture and coset models.” <em>1103.4986</em> (March 25). http://arxiv.org/abs/1103.4986 | * Keegan, Sinéad, and Werner Nahm. 2011. “Nahm’s conjecture and coset models.” <em>1103.4986</em> (March 25). http://arxiv.org/abs/1103.4986 | ||
* Fortin, J.-F., P. Mathieu, and S. O. Warnaar. 2006. “Characters of Graded Parafermion Conformal Field Theory”. ArXiv e-print hep-th/0602248. http://arxiv.org/abs/hep-th/0602248. | * Fortin, J.-F., P. Mathieu, and S. O. Warnaar. 2006. “Characters of Graded Parafermion Conformal Field Theory”. ArXiv e-print hep-th/0602248. http://arxiv.org/abs/hep-th/0602248. |
2014년 10월 12일 (일) 04:43 판
introduction
- parafermionic Hilbert space
- defined by the algebra of parafermionic fields \(\psi_1\) and \(\psi _1^{\dagger }\) of dimension 1-1/k and central charge $$c=\frac{3k}{k+2}-1=\frac{2(k-1)}{(k+2)}$$
- the highest-weight modules are parametrized by an integer (Dynkin label) $l$ with \(0\leq l < k\)
- \(\mathbb{Z}_k\) parafermion theory is known to be equivalent to the coset \(\hat{\text{su}}(2)_k/\hat{u}(1)_k\)
- Kac and Peterson (1984) obtained expression for the parafermion characters
- Lepowsky-Primc (1985) expression in fermionic form
- third expression
examples
- $k=1$, Ising models
- $k=2$, 3-states Potts model
\(\mathbb{Z}_{n+1}\) theory
- central charge\(\frac{2n}{n+3}\)
history
- String functions and branching functions
- CFT on torus and modular invariant partition functions
- Graded parafermion theory
articles
- Fendley, Paul. “Parafermionic Edge Zero Modes in Z_n-Invariant Spin Chains.” arXiv:1209.0472 [cond-Mat, Physics:hep-Th], September 3, 2012. http://arxiv.org/abs/1209.0472.
- Keegan, Sinéad, and Werner Nahm. 2011. “Nahm’s conjecture and coset models.” 1103.4986 (March 25). http://arxiv.org/abs/1103.4986
- Fortin, J.-F., P. Mathieu, and S. O. Warnaar. 2006. “Characters of Graded Parafermion Conformal Field Theory”. ArXiv e-print hep-th/0602248. http://arxiv.org/abs/hep-th/0602248.
- Schilling, Anne, and S. Ole Warnaar. “Conjugate Bailey Pairs.” arXiv:math/9906092, June 14, 1999. http://arxiv.org/abs/math/9906092.
- Cabra, D. C. 1998. “Spinons and Parafermions in Fermion Cosets.” In Supersymmetry and Quantum Field Theory, edited by Julius Wess and Vladimir P. Akulov, 220–229. Lecture Notes in Physics 509. Springer Berlin Heidelberg. http://link.springer.com/chapter/10.1007/BFb0105250.
- Fateev, V. A., and Al. B. Zamolodchikov. “Integrable Perturbations of ZN Parafermion Models and the O(3) Sigma Model.” Physics Letters B 271, no. 1–2 (November 14, 1991): 91–100. doi:10.1016/0370-2693(91)91283-2.
- Bilal, Adel. “Bosonization of ZN Parafermions and su(2)N KAČ-Moody Algebra.” Physics Letters B 226, no. 3–4 (August 10, 1989): 272–78. doi:10.1016/0370-2693(89)91194-5.
- Gepner, Doron, and Zongan Qiu. 1987. “Modular Invariant Partition Functions for Parafermionic Field Theories.” Nuclear Physics B 285: 423–453. doi:10.1016/0550-3213(87)90348-8.
- Gepner, Doron. 1987. “New Conformal Field Theories Associated with Lie Algebras and Their Partition Functions.” Nuclear Physics B 290: 10–24. doi:10.1016/0550-3213(87)90176-3.
- Lepowsky, James, and Mirko Primc. 1985. Structure of the Standard Modules for the Affine Lie Algebra $A^{(1)}_1$. Vol. 46. Contemporary Mathematics. American Mathematical Society, Providence, RI. http://www.ams.org/mathscinet-getitem?mr=814303.
- Kac, Victor G, and Dale H Peterson. 1984. “Infinite-dimensional Lie Algebras, Theta Functions and Modular Forms.” Advances in Mathematics 53 (2) (August): 125–264. doi:10.1016/0001-8708(84)90032-X.