"Z k parafermion theory"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
imported>Pythagoras0 |
imported>Pythagoras0 |
||
43번째 줄: | 43번째 줄: | ||
==articles== | ==articles== | ||
− | |||
− | |||
− | |||
* Fateev, V. A., and Al. B. Zamolodchikov. “Integrable Perturbations of ZN Parafermion Models and the O(3) Sigma Model.” Physics Letters B 271, no. 1–2 (November 14, 1991): 91–100. doi:10.1016/0370-2693(91)91283-2. | * Fateev, V. A., and Al. B. Zamolodchikov. “Integrable Perturbations of ZN Parafermion Models and the O(3) Sigma Model.” Physics Letters B 271, no. 1–2 (November 14, 1991): 91–100. doi:10.1016/0370-2693(91)91283-2. | ||
* Bilal, Adel. “Bosonization of ZN Parafermions and su(2)N KAČ-Moody Algebra.” Physics Letters B 226, no. 3–4 (August 10, 1989): 272–78. doi:[http://dx.doi.org/10.1016/0370-2693%2889%2991194-5 10.1016/0370-2693(89)91194-5]. | * Bilal, Adel. “Bosonization of ZN Parafermions and su(2)N KAČ-Moody Algebra.” Physics Letters B 226, no. 3–4 (August 10, 1989): 272–78. doi:[http://dx.doi.org/10.1016/0370-2693%2889%2991194-5 10.1016/0370-2693(89)91194-5]. | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
[[분류:개인노트]] | [[분류:개인노트]] | ||
[[분류:thesis]] | [[분류:thesis]] | ||
[[분류:conformal field theory]] | [[분류:conformal field theory]] |
2014년 11월 20일 (목) 16:04 판
introduction
- parafermionic Hilbert space
- defined by the algebra of parafermionic fields \(\psi_1\) and \(\psi _1^{\dagger }\) of dimension 1-1/k and central charge
$$c=\frac{k \dim \mathfrak{g}}{k+h^{\vee}}-\operatorname{rank}\mathfrak{g}=\frac{3k}{k+2}-1=\frac{2(k-1)}{(k+2)}$$ where $\mathfrak{g}=\mathfrak{sl}_2$ and $k=2$
- the highest-weight modules are parametrized by an integer (Dynkin label) $l$ with \(0\leq l < k\)
- \(\mathbb{Z}_k\) parafermion theory is known to be equivalent to the coset \(\hat{\text{su}}(2)_k/\hat{u}(1)_k\)
- Kac and Peterson (1984) obtained expression for the parafermion characters
- Lepowsky-Primc (1985) expression in fermionic form
- third expression
examples
- $k=1$, Ising models
- $k=2$, 3-states Potts model
\(\mathbb{Z}_{n+1}\) theory
- central charge\(\frac{2n}{n+3}\)
history
- String functions and branching functions
- CFT on torus and modular invariant partition functions
- Graded parafermion theory
computational resource
expositions
- Gepner, Level Two String Functions and Rogers Ramanujan Type Identities
- http://physics.stackexchange.com/questions/76617/what-is-parafermion-in-condensed-matter-physics
articles
- Fateev, V. A., and Al. B. Zamolodchikov. “Integrable Perturbations of ZN Parafermion Models and the O(3) Sigma Model.” Physics Letters B 271, no. 1–2 (November 14, 1991): 91–100. doi:10.1016/0370-2693(91)91283-2.
- Bilal, Adel. “Bosonization of ZN Parafermions and su(2)N KAČ-Moody Algebra.” Physics Letters B 226, no. 3–4 (August 10, 1989): 272–78. doi:10.1016/0370-2693(89)91194-5.