"Differential Galois theory"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
65번째 줄: 65번째 줄:
 
* [[1925178/attachments/857140|Abel_s_theorem_by_Arnold.djvu]]<br>
 
* [[1925178/attachments/857140|Abel_s_theorem_by_Arnold.djvu]]<br>
 
*  arnold book on abel theorem problem 348<br>
 
*  arnold book on abel theorem problem 348<br>
 +
*  Differential algebra<br>
 +
**  Kaplanski, 1957<br>
 
* http://gigapedia.info/1/galois_theory
 
* http://gigapedia.info/1/galois_theory
*   <br>
 
 
* http://gigapedia.info/1/differential+galois+theory
 
* http://gigapedia.info/1/differential+galois+theory
 
* http://gigapedia.info/1/Kolchin
 
* http://gigapedia.info/1/Kolchin
 
* http://gigapedia.info/1/ritt
 
* http://gigapedia.info/1/ritt
 
* [http://gigapedia.info/1/Galois%27+dream http://gigapedia.info/1/Galois'+dream]
 
* [http://gigapedia.info/1/Galois%27+dream http://gigapedia.info/1/Galois'+dream]
* http://gigapedia.info/1/
+
* http://gigapedia.info/1/differntial+algb
 
* http://gigapedia.info/1/
 
* http://gigapedia.info/1/
 
* http://www.amazon.com/s/ref=nb_ss_gw?url=search-alias%3Dstripbooks&field-keywords=
 
* http://www.amazon.com/s/ref=nb_ss_gw?url=search-alias%3Dstripbooks&field-keywords=

2009년 10월 24일 (토) 13:17 판

  • adele and idele
  • differential galois theory
  • Liouville 

 

elementary extension
  • using exponential and logarithm
  • elementary element

 

 

Liouville extension
  • we can adjoin integrals and exponentials of integrals + algbraic extension
  • an element is said to be representable by a generalized quadrature

 

Picard-Vessiot extension
  • examples
    • algebraic extension
    • adjoining an integral
    • adjoining the exponential of an integral

 

theorem

If a Picard-Vessiot extension is a Liouville extension, then the Galois group of this extension is solvable.

 

solution by quadrature

 

 

 

하위페이지

 

 

표준적인 도서 및 추천도서

 

참고할만한 자료