"Differential Galois theory"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
42번째 줄: 42번째 줄:
  
 
 
 
 
 +
 +
 
 +
 +
[[#]]
  
 
 
 
 
96번째 줄: 100번째 줄:
 
* http://en.wikipedia.org/wiki/covering_space
 
* http://en.wikipedia.org/wiki/covering_space
 
* http://en.wikipedia.org/wiki/Field_extension
 
* http://en.wikipedia.org/wiki/Field_extension
* <br>
+
*

2009년 12월 21일 (월) 18:18 판

  • adele and idele
  • differential galois theory
  • Liouville 

 

elementary extension
  • using exponential and logarithm
  • elementary element

 

 

Liouville extension
  • we can adjoin integrals and exponentials of integrals + algbraic extension
  • an element is said to be representable by a generalized quadrature

 

Picard-Vessiot extension
  • examples
    • algebraic extension
    • adjoining an integral
    • adjoining the exponential of an integral

 

theorem

If a Picard-Vessiot extension is a Liouville extension, then the Galois group of this extension is solvable.

 

solution by quadrature

 

 

#

 

 

하위페이지

 

 

 

표준적인 도서 및 추천도서
  • Abel_s_theorem_by_Arnold.djvu
  • arnold book on abel theorem problem 348
  • An introduction to differential algebra
    • Irving Kaplansky
  • algebraic theory of differential equations

 

 

참고할만한 자료