"Differential Galois theory"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
90번째 줄: 90번째 줄:
  
 
 
 
 
 +
 +
 
 +
 +
<h5>관련논문</h5>
 +
 +
* [http://www.jstor.org/stable/2154053 Liouvillian First Integrals of Differential Equations]<br>
 +
** Michael F. Singer, Transactions of the American Mathematical Society, Vol. 333, No. 2 (Oct., 1992), pp. 673-688
  
 
 
 
 
97번째 줄: 104번째 줄:
 
<h5>표준적인 도서 및 추천도서</h5>
 
<h5>표준적인 도서 및 추천도서</h5>
  
* [http://www.amazon.com/exec/obidos/ASIN/048649568X/ebk-20/ Algebraic Functions (Dover Phoenix Editions)]<br>
 
** '''Gilbert Ames Bliss '''<br>
 
** http://gigapedia.org/v5/item:view_links?id=100873<br>
 
 
* [[1925178/attachments/857140|Abel_s_theorem_by_Arnold.djvu]]<br>
 
*  arnold book on abel theorem problem 348<br>
 
 
*  Group Theory and Differential Equations<br>
 
*  Group Theory and Differential Equations<br>
** Lawrence Markus
+
** Lawrence Markus, 1960
 
*  An introduction to differential algebra<br>
 
*  An introduction to differential algebra<br>
 
**  Irving Kaplansky<br>
 
**  Irving Kaplansky<br>

2010년 1월 1일 (금) 04:57 판

  • adele and idele
  • differential galois theory
  • Liouville 

 

 

historical origin
  • integration in finite terms
  • quadrature of second order differential equation (Fuchsian differential equation)

 

 

differential field
  •  

 

elementary extension
  • using exponential and logarithm
  • elementary element

 

 

Liouville extension
  • we can adjoin integrals and exponentials of integrals + algbraic extension
  • an element is said to be representable by a generalized quadrature

 

 

Picard-Vessiot extension
  • examples
    • algebraic extension
    • adjoining an integral
    • adjoining the exponential of an integral

 

theorem

If a Picard-Vessiot extension is a Liouville extension, then the Galois group of this extension is solvable.

 

 

Fuchsian differential equation
  • regular singularity
  • indicial equation
    \(x(x-1)+px+q=0\)
     

 

solution by quadrature

 

 

하위페이지

 

http://www.caminos.upm.es/matematicas/morales%20ruiz/libroFSB.pdf

 

 

관련논문

 

 

표준적인 도서 및 추천도서

 

 

참고할만한 자료