"Differential Galois theory"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
68번째 줄: 68번째 줄:
 
* [http://www.caminos.upm.es/matematicas/morales%20ruiz/libroFSB.pdf Differential Galois Theory and Non-Integrability of Hamiltonian Systems]
 
* [http://www.caminos.upm.es/matematicas/morales%20ruiz/libroFSB.pdf Differential Galois Theory and Non-Integrability of Hamiltonian Systems]
 
* [http://www.google.com/url?sa=t&source=web&ct=res&cd=1&ved=0CA4QFjAA&url=http%3A%2F%2Fwww.iop.org%2FEJ%2Fabstract%2F0036-0279%2F38%2F1%2FR01&ei=lC8vS8nOIYqasgPAxYC7BA&usg=AFQjCNEbFgEgKKkYePd8PTExF9JevV6EQA&sig2=kEI9jPaMRI5NgzmUvWr9tA Integrability and non-integrability in Hamiltonian mechanics]
 
* [http://www.google.com/url?sa=t&source=web&ct=res&cd=1&ved=0CA4QFjAA&url=http%3A%2F%2Fwww.iop.org%2FEJ%2Fabstract%2F0036-0279%2F38%2F1%2FR01&ei=lC8vS8nOIYqasgPAxYC7BA&usg=AFQjCNEbFgEgKKkYePd8PTExF9JevV6EQA&sig2=kEI9jPaMRI5NgzmUvWr9tA Integrability and non-integrability in Hamiltonian mechanics]
 +
* [http://www.caminos.upm.es/matematicas/morales%20ruiz/libroFSB.pdf ]http://www.caminos.upm.es/matematicas/morales%20ruiz/libroFSB.pdf
 +
* [http://andromeda.rutgers.edu/%7Eliguo/DARTIII/Presentations/Khovanskii.pdf http://andromeda.rutgers.edu/~liguo/DARTIII/Presentations/Khovanskii.pdf]<br>
  
 
 
 
 
86번째 줄: 88번째 줄:
  
 
 
 
 
 
http://www.caminos.upm.es/matematicas/morales%20ruiz/libroFSB.pdf
 
  
 
 
 
 
97번째 줄: 97번째 줄:
 
* [http://www.jstor.org/stable/2154053 Liouvillian First Integrals of Differential Equations]<br>
 
* [http://www.jstor.org/stable/2154053 Liouvillian First Integrals of Differential Equations]<br>
 
** Michael F. Singer, Transactions of the American Mathematical Society, Vol. 333, No. 2 (Oct., 1992), pp. 673-688
 
** Michael F. Singer, Transactions of the American Mathematical Society, Vol. 333, No. 2 (Oct., 1992), pp. 673-688
* Its, A.R. (2003), [http://www.ams.org/notices/200311/fea-its.pdf "The Riemann–Hilbert Problem and Integrable Systems]", Notices of the AMS 50 (11): 1389–1400
 
*  The Riemann-Hilbert Problem<br>
 
** Gabriel Chˆenevert
 
  
 
 
 
 

2010년 1월 9일 (토) 20:43 판

  • differential galois theory
  • Liouville 

 

 

historical origin
  • integration in finite terms
  • quadrature of second order differential equation (Fuchsian differential equation)

 

 

differential field
  •  

 

elementary extension
  • using exponential and logarithm
  • elementary element

 

 

Liouville extension
  • we can adjoin integrals and exponentials of integrals + algbraic extension
  • an element is said to be representable by a generalized quadrature

 

 

Picard-Vessiot extension
  • examples
    • algebraic extension
    • adjoining an integral
    • adjoining the exponential of an integral

 

theorem

If a Picard-Vessiot extension is a Liouville extension, then the Galois group of this extension is solvable.

 

 

Fuchsian differential equation
  • regular singularity
  • indicial equation
    \(x(x-1)+px+q=0\)
     

 

solution by quadrature

 

 

 

하위페이지

 

 

 

관련논문

 

표준적인 도서 및 추천도서

 

 

참고할만한 자료