"Differential Galois theory"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
42번째 줄: 42번째 줄:
 
<h5>Picard-Vessiot extension</h5>
 
<h5>Picard-Vessiot extension</h5>
  
* this corresponds to 
+
* framework for linear differential equation
 +
* made by including solutions of DE to the base field (e.g. rational function field)
 +
* this corresponds to the concept of the splitting fields
 +
* we can define a Galois group for a linear differential equation.
 
*  examples<br>
 
*  examples<br>
 
** algebraic extension
 
** algebraic extension
61번째 줄: 64번째 줄:
  
 
* regular singularity
 
* regular singularity
*  indicial equation<br><math>x(x-1)+px+q=0</math><br>  <br>
+
*  indicial equation<br><math>x(x-1)+px+q=0</math><br>
 +
 
 +
 
 +
 
 +
theorem
 +
 
 +
A Fuchsian linear differential equation 
  
 
 
 
 

2010년 1월 22일 (금) 06:42 판

  • differential galois theory
  • Liouville 

 

 

historical origin
  • integration in finite terms
  • quadrature of second order differential equation (Fuchsian differential equation)

 

 

differential field
  •  

 

elementary extension
  • using exponential and logarithm
  • elementary element

 

 

Liouville extension
  • we can adjoin integrals and exponentials of integrals + algbraic extension
  • an element is said to be representable by a generalized quadrature

 

 

Picard-Vessiot extension
  • framework for linear differential equation
  • made by including solutions of DE to the base field (e.g. rational function field)
  • this corresponds to the concept of the splitting fields
  • we can define a Galois group for a linear differential equation.
  • examples
    • algebraic extension
    • adjoining an integral
    • adjoining the exponential of an integral

 

theorem

If a Picard-Vessiot extension is a Liouville extension, then the Galois group of this extension is solvable.

 

 

Fuchsian differential equation
  • regular singularity
  • indicial equation
    \(x(x-1)+px+q=0\)

 

theorem

A Fuchsian linear differential equation 

 

solution by quadrature

 

 

 

하위페이지

 

 

 

관련논문

 

표준적인 도서 및 추천도서

 

 

참고할만한 자료