"PSLQ for dilogarithm identities"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
(피타고라스님이 이 페이지를 개설하였습니다.) |
|||
1번째 줄: | 1번째 줄: | ||
+ | <h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">introduction</h5> | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | Implement the [[PSLQ algorithm]] first. | ||
+ | |||
+ | |||
+ | |||
+ | # <br> PSLQ[inx_List, prec_] :=<br> Block[<br> {<br> x,<br> n = Length[inx],<br> \[Gamma] = 2/Sqrt[3],<br> A, B, H, D, Dinv, t, i, j, k, l, iter,<br> \[Alpha], \[Beta], \[Lambda], \[Delta], r, R<br> },<br> (*Initialize*)<br> x = N[inx /Sqrt[inx . inx], prec];<br> s = Sqrt[MapIndexed[Plus @@ Drop[x^2, First[#2] - 1] &, x]];<br> A = B = IdentityMatrix[n];<br> H = Table[Which[<br> i > j, (-x[[i]]*x[[j]])/(s[[j]]*s[[j + 1]]),<br> i == j, s[[i + 1]]/s[[i]],<br> i < j, 0<br> ], {i, 1, n}, {j, 1, n - 1}];<br> (* Reduce H *)<br> t = HermiteReduce[H];<br> D = First[t];<br> Dinv = Inverse[D];<br> (*Update*)<br> H = Last[t]; x = x.Dinv; A = D.A; B = B.Dinv;<br> For[iter = 0, iter < $IterationLimit, ++iter,<br> (* Step One *)<br> r = MaxIndex[MapIndexed[\[Gamma]^First[#2] Abs[#1] &, Tr[H, List]]];<br> If[r < n - 1, \[Alpha] = H[[r, r]]; \[Beta] = <br> H[[r + 1, r]]; \[Lambda] = H[[r + 1, r + 1]]; \[Delta] = <br> Sqrt[\[Beta]^2 + \[Lambda]^2]];<br> R = IdentityMatrix[n]; t = R[[r]]; R[[r]] = R[[r + 1]]; <br> R[[r + 1]] = t;<br> x = x.R; H = R.H; A = R.A; B = B.R;<br> (* Step Two *)<br> If[r < n - 1,<br> H = H.Table[<br> Which[<br> i == r && j == r, \[Beta]/\[Delta],<br> i == r && j == r + 1, -\[Lambda]/\[Delta],<br> i == r + 1 && j == r, \[Lambda]/\[Delta],<br> i == r + 1 && j == r + 1, \[Beta]/\[Delta],<br> i == j && j != r || i == j && j != r + 1, 1,<br> True, 0],<br> {i, 1, n - 1}, {j, 1, n - 1}]<br> ];<br> (* Step Three *)<br> t = HermiteReduce[H];<br> D = First[t];<br> Dinv = Inverse[D];<br> (*Update*)<br> H = Last[t]; x = x.Dinv; A = D.A; B = B.Dinv;<br> (* Step Four *)<br> If[Min[Abs[Union[x, Tr[H, List]]]] <= 10^(-prec + 5), Break[]]<br> ];(*Main Iteraton*)<br> Return[Transpose[B][[MaxIndex[-Abs[x]]]]]<br> ]<br> | ||
+ | |||
+ | |||
+ | |||
+ | Then find a relation. | ||
+ | |||
+ | |||
+ | |||
+ | # <br> Clear[a]<br> f[x_] := x^3 + x - 1<br> Solve[f[x] == 0, x]<br> N[%]<br> a := -(2/(3 (9 + Sqrt[93])))^(1/3) + (1/2 (9 + Sqrt[93]))^(1/3)/3^(2/3)<br> N[a, 20]<br> L[x_] := PolyLog[2, x] + 1/2 Log[x] Log[1 - x]<br> S := {Pi^2/6,L[a], L[a^2], L[a^3], L[a^4], L[a^5], L[a^6]}<br> N[S, 100]<br> PSLQ[N[S, 100], 1000]<br> | ||
+ | # N[N[S, 50].%, 50]<br> | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | I found | ||
+ | |||
+ | <math>-2L(1)+2L(\alpha)+2L(\alpha^{2})-L(\alpha^{4})=0</math> or | ||
+ | |||
+ | <math>2L(\alpha)+2L(\alpha^{2})-L(\alpha^{4})=\frac{\pi^2}{3}</math><br> | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | <h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">history</h5> | ||
+ | |||
+ | * http://www.google.com/search?hl=en&tbs=tl:1&q= | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | <h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">related items</h5> | ||
+ | |||
+ | * [[PSLQ algorithm]]<br> | ||
+ | * [[Slater 34]]<br> | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | <h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">encyclopedia</h5> | ||
+ | |||
+ | * http://en.wikipedia.org/wiki/ | ||
+ | * http://www.scholarpedia.org/ | ||
+ | * http://www.proofwiki.org/wiki/ | ||
+ | * Princeton companion to mathematics([[2910610/attachments/2250873|Companion_to_Mathematics.pdf]]) | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | <h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">books</h5> | ||
+ | |||
+ | |||
+ | |||
+ | * [[2010년 books and articles]]<br> | ||
+ | * http://gigapedia.info/1/ | ||
+ | * http://gigapedia.info/1/ | ||
+ | * http://www.amazon.com/s/ref=nb_ss_gw?url=search-alias%3Dstripbooks&field-keywords= | ||
+ | |||
+ | [[4909919|]] | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | <h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">articles</h5> | ||
+ | |||
+ | |||
+ | |||
+ | * http://www.ams.org/mathscinet | ||
+ | * [http://www.zentralblatt-math.org/zmath/en/ ]http://www.zentralblatt-math.org/zmath/en/ | ||
+ | * http://arxiv.org/ | ||
+ | * http://www.pdf-search.org/ | ||
+ | * http://pythagoras0.springnote.com/ | ||
+ | * http://math.berkeley.edu/~reb/papers/index.html | ||
+ | * http://dx.doi.org/ | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | <h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">question and answers(Math Overflow)</h5> | ||
+ | |||
+ | * http://mathoverflow.net/search?q= | ||
+ | * http://mathoverflow.net/search?q= | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | <h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">blogs</h5> | ||
+ | |||
+ | * 구글 블로그 검색<br> | ||
+ | ** http://blogsearch.google.com/blogsearch?q=<br> | ||
+ | ** http://blogsearch.google.com/blogsearch?q= | ||
+ | * http://ncatlab.org/nlab/show/HomePage | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | <h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">experts on the field</h5> | ||
+ | |||
+ | * http://arxiv.org/ | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | <h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">links</h5> | ||
+ | |||
+ | * [http://detexify.kirelabs.org/classify.html Detexify2 - LaTeX symbol classifier] | ||
+ | * [http://pythagoras0.springnote.com/pages/1947378 수식표현 안내] | ||
+ | * [http://www.research.att.com/~njas/sequences/index.html The On-Line Encyclopedia of Integer Sequences] | ||
+ | * http://functions.wolfram.com/ |
2010년 8월 9일 (월) 20:12 판
introduction
Implement the PSLQ algorithm first.
-
PSLQ[inx_List, prec_] :=
Block[
{
x,
n = Length[inx],
\[Gamma] = 2/Sqrt[3],
A, B, H, D, Dinv, t, i, j, k, l, iter,
\[Alpha], \[Beta], \[Lambda], \[Delta], r, R
},
(*Initialize*)
x = N[inx /Sqrt[inx . inx], prec];
s = Sqrt[MapIndexed[Plus @@ Drop[x^2, First[#2] - 1] &, x]];
A = B = IdentityMatrix[n];
H = Table[Which[
i > j, (-xi*xj)/(sj*sj + 1),
i == j, si + 1/si,
i < j, 0
], {i, 1, n}, {j, 1, n - 1}];
(* Reduce H *)
t = HermiteReduce[H];
D = First[t];
Dinv = Inverse[D];
(*Update*)
H = Last[t]; x = x.Dinv; A = D.A; B = B.Dinv;
For[iter = 0, iter < $IterationLimit, ++iter,
(* Step One *)
r = MaxIndex[MapIndexed[\[Gamma]^First[#2] Abs[#1] &, Tr[H, List]]];
If[r < n - 1, \[Alpha] = Hr, r; \[Beta] =
Hr + 1, r; \[Lambda] = Hr + 1, r + 1; \[Delta] =
Sqrt[\[Beta]^2 + \[Lambda]^2]];
R = IdentityMatrix[n]; t = Rr; Rr = Rr + 1;
Rr + 1 = t;
x = x.R; H = R.H; A = R.A; B = B.R;
(* Step Two *)
If[r < n - 1,
H = H.Table[
Which[
i == r && j == r, \[Beta]/\[Delta],
i == r && j == r + 1, -\[Lambda]/\[Delta],
i == r + 1 && j == r, \[Lambda]/\[Delta],
i == r + 1 && j == r + 1, \[Beta]/\[Delta],
i == j && j != r || i == j && j != r + 1, 1,
True, 0],
{i, 1, n - 1}, {j, 1, n - 1}]
];
(* Step Three *)
t = HermiteReduce[H];
D = First[t];
Dinv = Inverse[D];
(*Update*)
H = Last[t]; x = x.Dinv; A = D.A; B = B.Dinv;
(* Step Four *)
If[Min[Abs[Union[x, Tr[H, List]]]] <= 10^(-prec + 5), Break[]]
];(*Main Iteraton*)
Return[Transpose[B][[MaxIndex[-Abs[x]]]]]
]
Then find a relation.
-
Clear[a]
f[x_] := x^3 + x - 1
Solve[f[x] == 0, x]
N[%]
a := -(2/(3 (9 + Sqrt[93])))^(1/3) + (1/2 (9 + Sqrt[93]))^(1/3)/3^(2/3)
N[a, 20]
L[x_] := PolyLog[2, x] + 1/2 Log[x] Log[1 - x]
S := {Pi^2/6,L[a], L[a^2], L[a^3], L[a^4], L[a^5], L[a^6]}
N[S, 100]
PSLQ[N[S, 100], 1000] - N[N[S, 50].%, 50]
I found
\(-2L(1)+2L(\alpha)+2L(\alpha^{2})-L(\alpha^{4})=0\) or
\(2L(\alpha)+2L(\alpha^{2})-L(\alpha^{4})=\frac{\pi^2}{3}\)
history
encyclopedia
- http://en.wikipedia.org/wiki/
- http://www.scholarpedia.org/
- http://www.proofwiki.org/wiki/
- Princeton companion to mathematics(Companion_to_Mathematics.pdf)
books
- 2010년 books and articles
- http://gigapedia.info/1/
- http://gigapedia.info/1/
- http://www.amazon.com/s/ref=nb_ss_gw?url=search-alias%3Dstripbooks&field-keywords=
[[4909919|]]
articles
- http://www.ams.org/mathscinet
- [1]http://www.zentralblatt-math.org/zmath/en/
- http://arxiv.org/
- http://www.pdf-search.org/
- http://pythagoras0.springnote.com/
- http://math.berkeley.edu/~reb/papers/index.html
- http://dx.doi.org/
question and answers(Math Overflow)
blogs
- 구글 블로그 검색
- http://ncatlab.org/nlab/show/HomePage
experts on the field