"Mutations in cluster algebras"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
imported>Pythagoras0
(새 문서: ==introduction== * A '''seed''' for A is an initial cluster <math>x=\{x_1,\cdots,x_n\}</math> and an <math>n\times n</math> skew-symmetrizable matrix $B$. (think of skew-symmetric) * ...)
 
imported>Pythagoras0
1번째 줄: 1번째 줄:
 
==introduction==
 
==introduction==
 
* A '''seed''' for A is an initial cluster <math>x=\{x_1,\cdots,x_n\}</math> and an <math>n\times n</math> skew-symmetrizable matrix $B$. (think of skew-symmetric)
 
* A '''seed''' for A is an initial cluster <math>x=\{x_1,\cdots,x_n\}</math> and an <math>n\times n</math> skew-symmetrizable matrix $B$. (think of skew-symmetric)
* From seed, we can mutate in each of n directions obtaining $n$ more seeds.
 
 
* Columns of $B$ encode exchange relations.
 
* Columns of $B$ encode exchange relations.
 +
* From seed, we can mutate in each of n directions obtaining $n$ more seeds
 +
* For mutation in the $k$-th direction, we obtain the new seed
 +
:<math>\{\{x_1,\cdots,x_{k-1},x_{k+1},\cdots,x_n\}\cup\{x_k'\}, \mu_k(B)\}</math>
 +
 +
 +
==exchange relation==
 
* For <math>k\in \{1,2,\cdots, n\}</math>,   
 
* For <math>k\in \{1,2,\cdots, n\}</math>,   
 
:<math>x_kx_k' = \prod_{b_{ik}>0} x_i^{b_{ik}}+\prod_{b_{ik}<0} x_i^{|b_{ik}|}</math>
 
:<math>x_kx_k' = \prod_{b_{ik}>0} x_i^{b_{ik}}+\prod_{b_{ik}<0} x_i^{|b_{ik}|}</math>
8번째 줄: 13번째 줄:
 
* This is the mutation into the k-th direction
 
* This is the mutation into the k-th direction
 
* (Fig3)
 
* (Fig3)
* New seed is <math>\{\{x_1,\cdots,x_{k-1},x_{k+1},\cdots,x_n\}\cup\{x_k'\}, \mu_k(B)\}</math>
+
 
 +
 
 +
==matrix mutation==
 
* Here <math>\mu_k(B)=(b_{ij}')</math> is a new matrix defined as
 
* Here <math>\mu_k(B)=(b_{ij}')</math> is a new matrix defined as
 
$$
 
$$

2013년 10월 13일 (일) 13:06 판

introduction

  • A seed for A is an initial cluster \(x=\{x_1,\cdots,x_n\}\) and an \(n\times n\) skew-symmetrizable matrix $B$. (think of skew-symmetric)
  • Columns of $B$ encode exchange relations.
  • From seed, we can mutate in each of n directions obtaining $n$ more seeds
  • For mutation in the $k$-th direction, we obtain the new seed

\[\{\{x_1,\cdots,x_{k-1},x_{k+1},\cdots,x_n\}\cup\{x_k'\}, \mu_k(B)\}\]


exchange relation

  • For \(k\in \{1,2,\cdots, n\}\),

\[x_kx_k' = \prod_{b_{ik}>0} x_i^{b_{ik}}+\prod_{b_{ik}<0} x_i^{|b_{ik}|}\]

  • This defines a new cluster variable \(x_k'\)
  • This is the mutation into the k-th direction
  • (Fig3)


matrix mutation

  • Here \(\mu_k(B)=(b_{ij}')\) is a new matrix defined as

$$ b_{ij}'= \begin{cases} -b_{ij}, & \text{if $k=i$ or $j$}\\ b_{ij}, & \text{if $b_{ik}b_{kj}\leq 0$}\\ b_{ij}+b_{ik}b_{kj}, & \text{if $b_{ik},b_{kj}>0$}\\ b_{ij}-b_{ik}b_{kj}, & \text{if $b_{ik},b_{kj}<0$}\\ \end{cases} $$

  • Note that \(\mu_k(B)\) is skew-symmetrizable and \(\mu_k^2=I\).


related items