"BRST quantization and cohomology"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
1번째 줄: | 1번째 줄: | ||
<h5>introduction</h5> | <h5>introduction</h5> | ||
− | Gauge theory = principal G-bundle | + | * Gauge theory = principal G-bundle<br> |
+ | * We require a quantization of gauge theory.<br> | ||
+ | * BRST quantization is one way to quantize the theory and is a part of path integral.<br> | ||
+ | * Gauge theory allows 'local symmetry' which should be ignored to be physical. <br> | ||
+ | * This ignoring process leads to the cohomoloy theory.<br> | ||
− | + | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
45번째 줄: | 43번째 줄: | ||
− | http://bomber0.byus.net/ | + | [http://bomber0.byus.net/ ] |
2010년 11월 5일 (금) 09:05 판
introduction
- Gauge theory = principal G-bundle
- We require a quantization of gauge theory.
- BRST quantization is one way to quantize the theory and is a part of path integral.
- Gauge theory allows 'local symmetry' which should be ignored to be physical.
- This ignoring process leads to the cohomoloy theory.
books
- 찾아볼 수학책
- http://gigapedia.info/1/
- http://gigapedia.info/1/
- http://gigapedia.info/1/
- http://gigapedia.info/1/
- http://www.amazon.com/s/ref=nb_ss_gw?url=search-alias%3Dstripbooks&field-keywords=
encyclopedia
- http://ko.wikipedia.org/wiki/
- http://en.wikipedia.org/wiki/
- http://en.wikipedia.org/wiki/
- http://en.wikipedia.org/wiki/
- Princeton companion to mathematics(Companion_to_Mathematics.pdf)
blogs
- http://www.math.columbia.edu/~woit/notesonbrst.pdf
- http://www.math.columbia.edu/~woit/wordpress/?cat=12
- Notes on BRST I: Representation Theory and Quantum Mechanics
- Notes on BRST II: Lie Algebra Cohomology, Physicist’s Version
- Notes on BRST III: Lie Algebra Cohomology
- Notes on BRST IV: Lie Algebra Cohomology for Semi-simple Lie Algebras
- Notes on BRST V: Highest Weight Theory
- 구글 블로그 검색
articles
- 논문정리
- http://www.ams.org/mathscinet/search/publications.html?pg4=ALLF&s4=
- http://www.zentralblatt-math.org/zmath/en/
- http://pythagoras0.springnote.com/
- http://math.berkeley.edu/~reb/papers/index.html
- http://front.math.ucdavis.edu/search?a=&t=&c=&n=40&s=Listings&q=
- http://www.ams.org/mathscinet/search/publications.html?pg4=AUCN&s4=&co4=AND&pg5=TI&s5=&co5=AND&pg6=PC&s6=&co6=AND&pg7=ALLF&co7=AND&Submit=Search&dr=all&yrop=eq&arg3=&yearRangeFirst=&yearRangeSecond=&pg8=ET&s8=All&s7=