"BRST quantization and cohomology"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
14번째 줄: 14번째 줄:
 
\Lambda_{\infty} semi-infinite form
 
\Lambda_{\infty} semi-infinite form
  
\mathfrak{g} : \mathbb{Z}=
+
\mathfrak{g} : \mathbb{Z}-graded Lie algebra
 +
 
 +
\sigma : anti-linear automorphism sending \mathfrak{g}_{n} to \mathfrak{g}_{-n}
 +
 
 +
H^2(\mathfrak{g})=0 (i.e. no non-trivial central extension)
 +
 
 +
 
  
 
 
 
 
70번째 줄: 76번째 줄:
 
** http://blogsearch.google.com/blogsearch?q=
 
** http://blogsearch.google.com/blogsearch?q=
 
** http://blogsearch.google.com/blogsearch?q=
 
** http://blogsearch.google.com/blogsearch?q=
 +
 +
 
 +
 +
<h5 style="margin: 0px; line-height: 2em;">expositions</h5>
 +
 +
\mathfrak{g}
 +
 +
 
  
 
 
 
 

2010년 11월 12일 (금) 08:30 판

introduction
  • Gauge theory = principal G-bundle
  • We require a quantization of gauge theory.
  • BRST quantization is one way to quantize the theory and is a part of path integral.
  • Gauge theory allows 'local symmetry' which should be ignored to be physical. 
  • This ignoring process leads to the cohomoloy theory.
  • the conditions D = 26 and α0 = 1 for the space-time dimension D and the zero-intercept α0 of leading trajectory are required by the nilpotency QB2 = 0 of the BRS charge

 

 

\Lambda_{\infty} semi-infinite form

\mathfrak{g} : \mathbb{Z}-graded Lie algebra

\sigma : anti-linear automorphism sending \mathfrak{g}_{n} to \mathfrak{g}_{-n}

H^2(\mathfrak{g})=0 (i.e. no non-trivial central extension)

 

 

 

related items

 

 

books

 

 

encyclopedia

 

[1]

 

blogs

 

expositions

\mathfrak{g}

 

 

articles

 

TeX