"BRST quantization and cohomology"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
6번째 줄: | 6번째 줄: | ||
* Gauge theory allows 'local symmetry' which should be ignored to be physical. <br> | * Gauge theory allows 'local symmetry' which should be ignored to be physical. <br> | ||
* This ignoring process leads to the cohomoloy theory.<br> | * This ignoring process leads to the cohomoloy theory.<br> | ||
+ | * BRST = quantization procedure of a classical system with constraints by introducing odd variables (“ghosts”)<br> | ||
* the conditions D = 26 and α0 = 1 for the space-time dimension D and the zero-intercept α0 of leading trajectory are required by the nilpotency QB2 = 0 of the BRS charge<br> | * the conditions D = 26 and α0 = 1 for the space-time dimension D and the zero-intercept α0 of leading trajectory are required by the nilpotency QB2 = 0 of the BRS charge<br> | ||
82번째 줄: | 83번째 줄: | ||
<h5 style="margin: 0px; line-height: 2em;">expositions</h5> | <h5 style="margin: 0px; line-height: 2em;">expositions</h5> | ||
− | * [http://www.math.sciences.univ-nantes.fr/%7Ewagemann/LAlecture.pdf | + | * [http://www.math.sciences.univ-nantes.fr/%7Ewagemann/LAlecture.pdf Introduction to Lie algebra cohomology with a view towards BRST cohomology]<br> |
+ | ** Friedrich Wagemann, 2010-8<br> | ||
2010년 11월 14일 (일) 07:49 판
introduction
- Gauge theory = principal G-bundle
- We require a quantization of gauge theory.
- BRST quantization is one way to quantize the theory and is a part of path integral.
- Gauge theory allows 'local symmetry' which should be ignored to be physical.
- This ignoring process leads to the cohomoloy theory.
- BRST = quantization procedure of a classical system with constraints by introducing odd variables (“ghosts”)
- the conditions D = 26 and α0 = 1 for the space-time dimension D and the zero-intercept α0 of leading trajectory are required by the nilpotency QB2 = 0 of the BRS charge
\Lambda_{\infty} semi-infinite form
\mathfrak{g} : \mathbb{Z}-graded Lie algebra
\sigma : anti-linear automorphism sending \mathfrak{g}_{n} to \mathfrak{g}_{-n}
H^2(\mathfrak{g})=0 (i.e. no non-trivial central extension)
books
- 찾아볼 수학책
- http://gigapedia.info/1/
- http://gigapedia.info/1/
- http://gigapedia.info/1/
- http://gigapedia.info/1/
- http://www.amazon.com/s/ref=nb_ss_gw?url=search-alias%3Dstripbooks&field-keywords=
encyclopedia
- http://ko.wikipedia.org/wiki/
- http://en.wikipedia.org/wiki/
- http://en.wikipedia.org/wiki/
- http://en.wikipedia.org/wiki/
- Princeton companion to mathematics(Companion_to_Mathematics.pdf)
blogs
- http://www.math.columbia.edu/~woit/notesonbrst.pdf
- http://www.math.columbia.edu/~woit/wordpress/?cat=12
- Notes on BRST I: Representation Theory and Quantum Mechanics
- Notes on BRST II: Lie Algebra Cohomology, Physicist’s Version
- Notes on BRST III: Lie Algebra Cohomology
- Notes on BRST IV: Lie Algebra Cohomology for Semi-simple Lie Algebras
- Notes on BRST V: Highest Weight Theory
- 구글 블로그 검색
expositions
- Introduction to Lie algebra cohomology with a view towards BRST cohomology
- Friedrich Wagemann, 2010-8
- Friedrich Wagemann, 2010-8
articles
- Semi-infinite cohomology and string theory
- I. B. Frenkel,. H. Garland, and. G. J. Zuckerman, PNAS November 1, 1986 vol. 83 no. 22 8442-8446
- 논문정리
- http://www.ams.org/mathscinet/search/publications.html?pg4=ALLF&s4=
- http://www.zentralblatt-math.org/zmath/en/
- http://pythagoras0.springnote.com/
- http://math.berkeley.edu/~reb/papers/index.html
- http://front.math.ucdavis.edu/search?a=&t=&c=&n=40&s=Listings&q=
- http://www.ams.org/mathscinet/search/publications.html?pg4=AUCN&s4=&co4=AND&pg5=TI&s5=&co5=AND&pg6=PC&s6=&co6=AND&pg7=ALLF&co7=AND&Submit=Search&dr=all&yrop=eq&arg3=&yearRangeFirst=&yearRangeSecond=&pg8=ET&s8=All&s7=