"BRST quantization and cohomology"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
20번째 줄: 20번째 줄:
  
 
H^2(\mathfrak{g})=0 (i.e. no non-trivial central extension)
 
H^2(\mathfrak{g})=0 (i.e. no non-trivial central extension)
 +
 +
 
 +
 +
 
 +
 +
<h5 style="margin: 0px; line-height: 2em;">ghost variables</h5>
 +
 +
* [[#]]<br>
 +
 +
 
  
 
 
 
 
27번째 줄: 37번째 줄:
 
<h5 style="margin: 0px; line-height: 2em;">nilpotency of BRST operator</h5>
 
<h5 style="margin: 0px; line-height: 2em;">nilpotency of BRST operator</h5>
  
[http://bolvan.ph.utexas.edu/%7Evadim/Classes/2008f.homeworks/brst.pdf http://bolvan.ph.utexas.edu/~vadim/Classes/2008f.homeworks/brst.pdf]
+
* [http://bolvan.ph.utexas.edu/%7Evadim/Classes/2008f.homeworks/brst.pdf http://bolvan.ph.utexas.edu/~vadim/Classes/2008f.homeworks/brst.pdf]<br>
  
 
 
 
 

2010년 11월 14일 (일) 09:00 판

introduction
  • Gauge theory = principal G-bundle
  • We require a quantization of gauge theory.
  • BRST quantization is one way to quantize the theory and is a part of path integral.
  • Gauge theory allows 'local symmetry' which should be ignored to be physical. 
  • This ignoring process leads to the cohomoloy theory.
  • BRST = quantization procedure of a classical system with constraints by introducing odd variables (“ghosts”)
  • the conditions D = 26 and α0 = 1 for the space-time dimension D and the zero-intercept α0 of leading trajectory are required by the nilpotency QB2 = 0 of the BRS charge

 

 

\Lambda_{\infty} semi-infinite form

\mathfrak{g} : \mathbb{Z}-graded Lie algebra

\sigma : anti-linear automorphism sending \mathfrak{g}_{n} to \mathfrak{g}_{-n}

H^2(\mathfrak{g})=0 (i.e. no non-trivial central extension)

 

 

ghost variables

 

 

 

nilpotency of BRST operator

 

 

related items

 

 

books

 

 

encyclopedia

 

[1]

 

 

expositions

 

 

articles

 

blogs

 

 

 

TeX