"BRST quantization and cohomology"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
91번째 줄: 91번째 줄:
  
 
* [http://www.math.sciences.univ-nantes.fr/%7Ewagemann/LAlecture.pdf Introduction to Lie algebra cohomology with a view towards BRST cohomology] ,Friedrich Wagemann, 2010-8<br>
 
* [http://www.math.sciences.univ-nantes.fr/%7Ewagemann/LAlecture.pdf Introduction to Lie algebra cohomology with a view towards BRST cohomology] ,Friedrich Wagemann, 2010-8<br>
* [http://empg.maths.ed.ac.uk/Activities/BRST/ PG minicourse: BRST cohomology]<br>
+
* [http://empg.maths.ed.ac.uk/Activities/BRST/ PG minicourse: BRST cohomology] (http://empg.maths.ed.ac.uk/Activities/BRST/Notes.pdf , very good intro)<br>
  
 
 
 
 
104번째 줄: 104번째 줄:
 
* [http://dx.doi.org/10.1007/BF01466770 BRST cohomology in classical mechanics]
 
* [http://dx.doi.org/10.1007/BF01466770 BRST cohomology in classical mechanics]
 
* Symplectic Reduction, BRS Cohomology, and Infinite-Dimensional Clifford algebras, B. Kostant, S. Sternberg, Ann. Physics 176 (1987) 49–113
 
* Symplectic Reduction, BRS Cohomology, and Infinite-Dimensional Clifford algebras, B. Kostant, S. Sternberg, Ann. Physics 176 (1987) 49–113
* [http://www.pnas.org/content/83/22/8442.abstract Semi-infinite cohomology and string theory]<br>
+
* I. B. Frenkel,. H. Garland, and. G. J. Zuckerman, PNAS November 1, 1986 vol. 83 no. 22 8442-8446, [http://www.pnas.org/content/83/22/8442.abstract Semi-infinite cohomology and string theory]
** I. B. Frenkel,. H. Garland, and. G. J. Zuckerman, PNAS November 1, 1986 vol. 83 no. 22 8442-8446
 
 
* http://dx.doi.org/10.1007/BF02096498
 
* http://dx.doi.org/10.1007/BF02096498
  

2011년 5월 13일 (금) 16:08 판

introduction
  • Gauge theory = principal G-bundle
  • We require a quantization of gauge theory.
  • BRST quantization is one way to quantize the theory and is a part of path integral.
  • Gauge theory allows 'local symmetry' which should be ignored to be physical. 
  • This ignoring process leads to the cohomoloy theory.
  • BRST = quantization procedure of a classical system with constraints by introducing odd variables (“ghosts”)
  • the conditions D = 26 and α0 = 1 for the space-time dimension D and the zero-intercept α0 of leading trajectory are required by the nilpotency QB2 = 0 of the BRS charge

 

 

\Lambda_{\infty} semi-infinite form

\mathfrak{g} : \mathbb{Z}-graded Lie algebra

\sigma : anti-linear automorphism sending \mathfrak{g}_{n} to \mathfrak{g}_{-n}

H^2(\mathfrak{g})=0 (i.e. no non-trivial central extension)

 

 

ghost variables

 

 

 

nilpotency of BRST operator

 

 

applications
  • BRST approach to minimal models
  • BRST approach to no-ghost theorem
  • BRST approach to coset constructions

 

 

 

related items

 

 

books

 

 

encyclopedia

 

[1]

 

 

expositions

 

 

articles

 

blogs

 

 

 

TeX