"BRST quantization and cohomology"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
31번째 줄: 31번째 줄:
  
 
 
 
 
 +
 +
Faddeev-Ghost determin
  
 
 
 
 
  
<h5 style="margin: 0px; line-height: 2em;">path integral</h5>
+
 
  
 
+
<h5 style="margin: 0px; line-height: 2em;">path integral and ghost sector</h5>
  
 
+
*  
 +
* <math>Z = \int\!\mathcal{D}X\,\mathcal{D}b \mathcal{D}c \,e^{-\int\left(\partial X \partial \bar{X} -b_{zz}\partial_{\bar{z}}c^{z}+b_{\bar{z}\bar{z}}\partial_{z}c^{\bar{z}}\right)}</math>
 +
* DX : matter and DbDc : ghost sector
 +
* bc system of \epsilon=+1 (in [[Faddeev–Popov ghost fields]])
 +
* \lambda=2
 +
* c_{b,c}=-26
 +
* [c]=-1,[b]=2
  
 
 
 
 

2011년 10월 4일 (화) 07:29 판

introduction
  • Gauge theory = principal G-bundle
  • We require a quantization of gauge theory
  • BRST quantization is one way to quantize the theory and is a part of path integral
    • Gauge theory allows 'local symmetry' which should be ignored to be physical
    • this ignoring process leads to the cohomoloy theory.
  • BRST = quantization procedure of a classical system with constraints by introducing odd variables (“ghosts”)
  • re-packaging of Faddeev-Popov quantization
  • the conditions D = 26 and α0 = 1 for the space-time dimension D and the zero-intercept α0 of leading trajectory are required by the nilpotency QB2 = 0 of the BRS charge

 

 

gauge fixing

 

 

 

 

ghost variables

 

 

Faddeev-Ghost determin

 

 

path integral and ghost sector
  •  
  • \(Z = \int\!\mathcal{D}X\,\mathcal{D}b \mathcal{D}c \,e^{-\int\left(\partial X \partial \bar{X} -b_{zz}\partial_{\bar{z}}c^{z}+b_{\bar{z}\bar{z}}\partial_{z}c^{\bar{z}}\right)}\)
  • DX : matter and DbDc : ghost sector
  • bc system of \epsilon=+1 (in Faddeev–Popov ghost fields)
  • \lambda=2
  • c_{b,c}=-26
  • [c]=-1,[b]=2

 

 

 

nilpotency of BRST operator

 

 

 

BRST cohomology
  • \(\Lambda_{\infty}\) semi-infinite form
  • \(\mathfrak{g}\) \[\mathbb{Z}\]-graded Lie algebra
  • \(\sigma\) : anti-linear automorphism sending \(\mathfrak{g}_{n}\) to \(\mathfrak{g}_{-n}\)
  • \(H^2(\mathfrak{g})=0\) (i.e. no non-trivial central extension)

 

 

 

applications
  • BRST approach to minimal models
  • BRST approach to no-ghost theorem
  • BRST approach to coset constructions

 

 

 

related items

 

 

books
  • Polchinski, vol. I. $3.1-3.4, 4.2-4.3
  • GSW, I. 3.1-3.2

 

 

encyclopedia

 

[1]

 

 

expositions

 

 

articles

 

blogs

 

 

 

TeX