"Mirror symmetry"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
imported>Pythagoras0 |
imported>Pythagoras0 |
||
14번째 줄: | 14번째 줄: | ||
==exposition== | ==exposition== | ||
− | * http://arxiv.org/abs/1412.1268 | + | * Chan, Kwokwai. “SYZ Mirror Symmetry for Toric Varieties.” arXiv:1412.7231 [math-Ph], December 22, 2014. http://arxiv.org/abs/1412.7231. |
+ | * Clader, Emily, and Yongbin Ruan. “Mirror Symmetry Constructions.” arXiv:1412.1268 [hep-Th, Physics:math-Ph], December 3, 2014. http://arxiv.org/abs/1412.1268. | ||
* Hosono, Shinobu, and Hiromichi Takagi. “Mirror Symmetry and Projective Geometry of Fourier-Mukai Partners.” arXiv:1410.1254 [math], October 6, 2014. http://arxiv.org/abs/1410.1254. | * Hosono, Shinobu, and Hiromichi Takagi. “Mirror Symmetry and Projective Geometry of Fourier-Mukai Partners.” arXiv:1410.1254 [math], October 6, 2014. http://arxiv.org/abs/1410.1254. | ||
* Chan, Kwokwai. “The Strominger-Yau-Zaslow Conjecture and Its Impact.” arXiv:1408.6062 [math], August 26, 2014. http://arxiv.org/abs/1408.6062. | * Chan, Kwokwai. “The Strominger-Yau-Zaslow Conjecture and Its Impact.” arXiv:1408.6062 [math], August 26, 2014. http://arxiv.org/abs/1408.6062. |
2014년 12월 24일 (수) 00:28 판
introduction
homological mirror symmetry
- 1994 Kontsevich
- categorical equivalence of the following two categories
- derived category of bounded complexes of coherent sheaves on a smooth, complete, algebraic variety $X$ over an algebraically closed field
- Fukaya category of the symplectic manifold $\tilde{X}$
exposition
- Chan, Kwokwai. “SYZ Mirror Symmetry for Toric Varieties.” arXiv:1412.7231 [math-Ph], December 22, 2014. http://arxiv.org/abs/1412.7231.
- Clader, Emily, and Yongbin Ruan. “Mirror Symmetry Constructions.” arXiv:1412.1268 [hep-Th, Physics:math-Ph], December 3, 2014. http://arxiv.org/abs/1412.1268.
- Hosono, Shinobu, and Hiromichi Takagi. “Mirror Symmetry and Projective Geometry of Fourier-Mukai Partners.” arXiv:1410.1254 [math], October 6, 2014. http://arxiv.org/abs/1410.1254.
- Chan, Kwokwai. “The Strominger-Yau-Zaslow Conjecture and Its Impact.” arXiv:1408.6062 [math], August 26, 2014. http://arxiv.org/abs/1408.6062.
- Ueda, Kazushi. “Mirror Symmetry and K3 Surfaces.” arXiv:1407.1566 [math], July 6, 2014. http://arxiv.org/abs/1407.1566.
- http://www.kias.re.kr/file/NewsletterNo37.pdf
- Lectures on Mirror Symmetry, Derived Categories, and D-branes
Authors: Anton Kapustin, Dmitri Orlov http://arxiv.org/abs/math/0308173 - Yau, Shing-Tung, ed. 1992. Essays on Mirror Manifolds. Hong Kong: International Press. http://www.ams.org/mathscinet-getitem?mr=1191418.
articles
- Hiep, Dang Tuan. “Rational Curves on Calabi-Yau Threefolds: Verifying Mirror Symmetry Predictions.” arXiv:1409.3712 [math], September 12, 2014. http://arxiv.org/abs/1409.3712.
- Polishchuk, Alexander, and Eric Zaslow. 1998. “Categorical Mirror Symmetry: The Elliptic Curve.” Advances in Theoretical and Mathematical Physics 2 (2): 443–470.
- Kontsevich, Maxim. 1995. “Homological Algebra of Mirror Symmetry.” In Proceedings of the International Congress of Mathematicians, Vol.\ 1, 2 (Zürich, 1994), 120–139. Basel: Birkhäuser. http://www.ams.org/mathscinet-getitem?mr=1403918.
- Candelas, Philip, Xenia C. de la Ossa, Paul S. Green, and Linda Parkes. 1991. “A Pair of Calabi-Yau Manifolds as an Exactly Soluble Superconformal Theory.” Nuclear Physics. B 359 (1): 21–74. doi:10.1016/0550-3213(91)90292-6.
- Greene, B. R., and M. R. Plesser. 1990. “Duality in Calabi-Yau Moduli Space.” Nuclear Physics. B 338 (1): 15–37. doi:10.1016/0550-3213(90)90622-K.
- Candelas, P., M. Lynker, and R. Schimmrigk. 1990. “Calabi-Yau Manifolds in Weighted $\bf P_4$.” Nuclear Physics. B 341 (2): 383–402. doi:10.1016/0550-3213(90)90185-G.