"Mirror symmetry"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
imported>Pythagoras0
imported>Pythagoras0
14번째 줄: 14번째 줄:
  
 
==exposition==
 
==exposition==
 +
* Port, Andrew. “An Introduction to Homological Mirror Symmetry and the Case of Elliptic Curves.” arXiv:1501.00730 [math], January 4, 2015. http://arxiv.org/abs/1501.00730.
 
* Quigley, Callum. “Mirror Symmetry in Physics: The Basics.” arXiv:1412.8180 [hep-Th], December 28, 2014. http://arxiv.org/abs/1412.8180.
 
* Quigley, Callum. “Mirror Symmetry in Physics: The Basics.” arXiv:1412.8180 [hep-Th], December 28, 2014. http://arxiv.org/abs/1412.8180.
 
* Chan, Kwokwai. “SYZ Mirror Symmetry for Toric Varieties.” arXiv:1412.7231 [math-Ph], December 22, 2014. http://arxiv.org/abs/1412.7231.
 
* Chan, Kwokwai. “SYZ Mirror Symmetry for Toric Varieties.” arXiv:1412.7231 [math-Ph], December 22, 2014. http://arxiv.org/abs/1412.7231.

2015년 1월 6일 (화) 00:39 판

introduction

homological mirror symmetry

  • 1994 Kontsevich
  • categorical equivalence of the following two categories
    • derived category of bounded complexes of coherent sheaves on a smooth, complete, algebraic variety $X$ over an algebraically closed field
    • Fukaya category of the symplectic manifold $\tilde{X}$


related items


exposition

articles

  • Hiep, Dang Tuan. “Rational Curves on Calabi-Yau Threefolds: Verifying Mirror Symmetry Predictions.” arXiv:1409.3712 [math], September 12, 2014. http://arxiv.org/abs/1409.3712.
  • Polishchuk, Alexander, and Eric Zaslow. 1998. “Categorical Mirror Symmetry: The Elliptic Curve.” Advances in Theoretical and Mathematical Physics 2 (2): 443–470.
  • Kontsevich, Maxim. 1995. “Homological Algebra of Mirror Symmetry.” In Proceedings of the International Congress of Mathematicians, Vol.\ 1, 2 (Zürich, 1994), 120–139. Basel: Birkhäuser. http://www.ams.org/mathscinet-getitem?mr=1403918.
  • Candelas, Philip, Xenia C. de la Ossa, Paul S. Green, and Linda Parkes. 1991. “A Pair of Calabi-Yau Manifolds as an Exactly Soluble Superconformal Theory.” Nuclear Physics. B 359 (1): 21–74. doi:10.1016/0550-3213(91)90292-6.
  • Greene, B. R., and M. R. Plesser. 1990. “Duality in Calabi-Yau Moduli Space.” Nuclear Physics. B 338 (1): 15–37. doi:10.1016/0550-3213(90)90622-K.
  • Candelas, P., M. Lynker, and R. Schimmrigk. 1990. “Calabi-Yau Manifolds in Weighted $\bf P_4$.” Nuclear Physics. B 341 (2): 383–402. doi:10.1016/0550-3213(90)90185-G.

books