"Bloch-Beilinson conjecture for elliptic curves"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
imported>Pythagoras0 |
imported>Pythagoras0 잔글 (Pythagoras0 사용자가 Bloch's regulator 문서를 Bloch-Beilinson conjecture 문서로 옮겼습니다.) |
(차이 없음)
|
2015년 1월 23일 (금) 21:47 판
introduction
- In 1986, Spencer Bloch gave an abstract definition of a (regulator) map from higher Chow groups to Deligne-Beilinson cohomology
- $E$: elliptic curve over $\mathbb{Q}$
- the value at $s=2$ of the $L$-function for $E$ in terms of a regulator map
$$ K_2(E_{\mathbb{C}}) \to \mathbb{C} $$
- When E has complex multiplication a proof of the conjecture has been given by D. Rohrlich
articles
- Duke, William, and Özlem Imamoḡlu. 2007. “On a Formula of Bloch.” Uniwersytet Im. Adama Mickiewicza W Poznaniu. Wydzia\l\ Matematyki I Informatyki. Functiones et Approximatio Commentarii Mathematici 37 (part 1): 109–117. doi:10.7169/facm/1229618744.
- Bloch, S., and D. Grayson. 1986. “$K_2$ and $L$-Functions of Elliptic Curves: Computer Calculations.” In Applications of Algebraic $K$-Theory to Algebraic Geometry and Number Theory, Part I, II (Boulder, Colo., 1983), 55:79–88. Contemp. Math. Providence, RI: Amer. Math. Soc. http://www.ams.org/mathscinet-getitem?mr=862631.
- Rohrlich, David E. 1987. “Elliptic Curves and Values of $L$-Functions.” In Number Theory (Montreal, Que., 1985), 7:371–387. CMS Conf. Proc. Providence, RI: Amer. Math. Soc. http://www.ams.org/mathscinet-getitem?mr=894330.
- Bloch, Spencer. 1981. “The Dilogarithm and Extensions of Lie Algebras.” In Algebraic $K$-Theory, Evanston 1980 (Proc. Conf., Northwestern Univ., Evanston, Ill., 1980), 854:1–23. Lecture Notes in Math. Berlin: Springer. http://www.ams.org/mathscinet-getitem?mr=618298.
- Beilinson, A. A. 1980. “Higher Regulators and Values of $L$-Functions of Curves.” Akademiya Nauk SSSR. Funktsional\cprime Ny\uı\ Analiz I Ego Prilozheniya 14 (2): 46–47.
- Bloch, S. 1980. “Algebraic $K$-Theory and Zeta Functions of Elliptic Curves.” In Proceedings of the International Congress of Mathematicians (Helsinki, 1978), 511–515. Helsinki: Acad. Sci. Fennica. http://www.ams.org/mathscinet-getitem?mr=562648.
- Weißschuh, Thomas. ‘A Commutative Regulator Map into Deligne-Beilinson Cohomology’. arXiv:1410.4686 [math], 17 October 2014. http://arxiv.org/abs/1410.4686.
books
- Higher Regulators, Algebraic K-Theory, and Zeta Functions of Elliptic Curves Bloch, American Mathematical Society