"3-states Potts model"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
6번째 줄: | 6번째 줄: | ||
* having the Z_3 symmetry W_3 algebra ([[W-algebra]])<br> | * having the Z_3 symmetry W_3 algebra ([[W-algebra]])<br> | ||
− | + | ||
− | + | ||
− | + | ||
− | < | + | <h5 style="line-height: 2em; margin: 0px;">conformal field theory</h5> |
− | ( or <math>1\leq r< s\leq m</math> condition is also used) | + | * [[discrete series unitary representations|discrete series unitary representations and GKO coset construction]]<br><math>m= 5</math><br><math>c = \frac{4}{5}</math><br><math>h_{r,s}(c) = {((m+1)r-ms)^2-1 \over 4m(m+1)}</math><br><math>r = 1, 2, 3,4</math> and <math>s= 1, 2, 3,\cdots, r</math> i.e. <math>1\leq s\leq r< 5</math><br> ( or <math>1\leq r< s\leq m</math> condition is also used)<br> |
+ | * 10 irreducible representations<br> | ||
73번째 줄: | 74번째 줄: | ||
* [http://dx.doi.org/10.1016/0550-3213%2890%2990333-9 Thermodynamic Bethe ansatz in relativistic models: Scaling 3-state potts and Lee-Yang models]<br> | * [http://dx.doi.org/10.1016/0550-3213%2890%2990333-9 Thermodynamic Bethe ansatz in relativistic models: Scaling 3-state potts and Lee-Yang models]<br> | ||
** Al. B. Zamolodchikov, 1990<br> | ** Al. B. Zamolodchikov, 1990<br> | ||
− | * | + | * [http://dx.doi.org/10.1142/S0217751X88000333 Integrals of Motion in Scaling 3-STATE Potts Model Field Theory].<br> |
− | ** Zamolodchikov, A,<br> | + | ** Zamolodchikov, A, Volume: 3, Issue: 3(1988) pp. 743-750<br> |
− | * | + | * [http://dx.doi.org/10.1016/0550-3213%2887%2990166-0 Conformal quantum field theory models in two dimensions having Z3 symmetry]<br> |
** V. A. Fateev and A. B. Zamolodchikov, Nuclear Phys. B 280 (1987), no. 4, 644–660.<br> | ** V. A. Fateev and A. B. Zamolodchikov, Nuclear Phys. B 280 (1987), no. 4, 644–660.<br> | ||
* [[2010년 books and articles|논문정리]] | * [[2010년 books and articles|논문정리]] |
2010년 11월 29일 (월) 17:40 판
introduction
- 3-states Potts model = M(5,6) minimal model
- two modular invariant partition functions
- c=4/5, effective central charge=4/5
- having the Z_3 symmetry W_3 algebra (W-algebra)
conformal field theory
- discrete series unitary representations and GKO coset construction
\(m= 5\)
\(c = \frac{4}{5}\)
\(h_{r,s}(c) = {((m+1)r-ms)^2-1 \over 4m(m+1)}\)
\(r = 1, 2, 3,4\) and \(s= 1, 2, 3,\cdots, r\) i.e. \(1\leq s\leq r< 5\)
( or \(1\leq r< s\leq m\) condition is also used) - 10 irreducible representations
history
encyclopedia
- http://ko.wikipedia.org/wiki/
- http://en.wikipedia.org/wiki/
- Princeton companion to mathematics(Companion_to_Mathematics.pdf)
books
- 2010년 books and articles
- http://gigapedia.info/1/
- http://gigapedia.info/1/
- http://www.amazon.com/s/ref=nb_ss_gw?url=search-alias%3Dstripbooks&field-keywords=
[[4909919|]]
articles
- On thermodynamic approaches to conformal field theory
- Jose Gaite, Nuclear Physics B Volume 525, Issue 3, 17 August 1998, Pages 627-640
- Jose Gaite, Nuclear Physics B Volume 525, Issue 3, 17 August 1998, Pages 627-640
- Thermodynamics of the 3-state Potts Spin chain
- Rinat Kedem, 1992
- Rinat Kedem, 1992
- Thermodynamic Bethe ansatz in relativistic models: Scaling 3-state potts and Lee-Yang models
- Al. B. Zamolodchikov, 1990
- Al. B. Zamolodchikov, 1990
- Integrals of Motion in Scaling 3-STATE Potts Model Field Theory.
- Zamolodchikov, A, Volume: 3, Issue: 3(1988) pp. 743-750
- Zamolodchikov, A, Volume: 3, Issue: 3(1988) pp. 743-750
- Conformal quantum field theory models in two dimensions having Z3 symmetry
- V. A. Fateev and A. B. Zamolodchikov, Nuclear Phys. B 280 (1987), no. 4, 644–660.
- V. A. Fateev and A. B. Zamolodchikov, Nuclear Phys. B 280 (1987), no. 4, 644–660.
- 논문정리
- http://www.ams.org/mathscinet
- http://www.zentralblatt-math.org/zmath/en/
- http://pythagoras0.springnote.com/
- http://math.berkeley.edu/~reb/papers/index.html[1]
- http://front.math.ucdavis.edu/search?a=&t=&c=&n=40&s=Listings&q=
- http://www.ams.org/mathscinet/search/publications.html?pg4=AUCN&s4=&co4=AND&pg5=TI&s5=&co5=AND&pg6=PC&s6=&co6=AND&pg7=ALLF&co7=AND&Submit=Search&dr=all&yrop=eq&arg3=&yearRangeFirst=&yearRangeSecond=&pg8=ET&s8=All&s7=
- http://dx.doi.org/10.1007/BF01049954
question and answers(Math Overflow)
blogs
experts on the field