"감마곱 (Gamma Products)"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
1번째 줄: 1번째 줄:
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">이 항목의 수학노트 원문주소</h5>
+
==개요==
 
 
* [[감마곱 (Gamma Products)]]
 
 
 
 
 
 
 
 
 
 
 
<h5>개요</h5>
 
  
 
*  자연수 n에 대한 잉여계의 부분집합 A에 대하여, 다음과 같은 감마함수의 곱이 언제 닫힌 형태로 표현되는가의 문제<br><math>\prod_{k\in A}\Gamma(\frac{k}{n})</math><br>
 
*  자연수 n에 대한 잉여계의 부분집합 A에 대하여, 다음과 같은 감마함수의 곱이 언제 닫힌 형태로 표현되는가의 문제<br><math>\prod_{k\in A}\Gamma(\frac{k}{n})</math><br>
15번째 줄: 7번째 줄:
 
 
 
 
  
<h5></h5>
+
====
  
 
<math>\Gamma \left(\frac{1}{6}\right) \Gamma \left(\frac{5}{6}\right)=2\sqrt{\pi }</math>
 
<math>\Gamma \left(\frac{1}{6}\right) \Gamma \left(\frac{5}{6}\right)=2\sqrt{\pi }</math>
38번째 줄: 30번째 줄:
  
 
 
 
 
 
+
==역사==
<h5 style="margin: 0px; line-height: 2em;">역사</h5>
 
  
 
 
 
 
50번째 줄: 41번째 줄:
 
 
 
 
  
<h5>메모</h5>
+
==메모==
  
 
* http://mathoverflow.net/questions/9878/a-product-of-gamma-values-over-the-numbers-coprime-to-n
 
* http://mathoverflow.net/questions/9878/a-product-of-gamma-values-over-the-numbers-coprime-to-n
56번째 줄: 47번째 줄:
 
 
 
 
  
<h5>관련된 항목들</h5>
+
==관련된 항목들==
  
 
* [[Chowla-셀베르그 공식]]
 
* [[Chowla-셀베르그 공식]]
65번째 줄: 56번째 줄:
 
 
 
 
  
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">수학용어번역</h5>
+
==수학용어번역==
  
 
* 단어사전 http://www.google.com/dictionary?langpair=en|ko&q=
 
* 단어사전 http://www.google.com/dictionary?langpair=en|ko&q=
80번째 줄: 71번째 줄:
 
 
 
 
  
<h5>사전 형태의 자료</h5>
+
==사전 형태의 자료==
  
 
* http://ko.wikipedia.org/wiki/
 
* http://ko.wikipedia.org/wiki/
92번째 줄: 83번째 줄:
 
 
 
 
  
<h5>관련논문</h5>
+
==관련논문==
  
 
* Luschny, Peter, and Stefan Wehmeier. 2009. “The lcm(1,2,...,n) as a product of sine values sampled over the points in Farey sequences.” <em>0909.1838</em> (September 10). http://arxiv.org/abs/0909.1838 .
 
* Luschny, Peter, and Stefan Wehmeier. 2009. “The lcm(1,2,...,n) as a product of sine values sampled over the points in Farey sequences.” <em>0909.1838</em> (September 10). http://arxiv.org/abs/0909.1838 .
107번째 줄: 98번째 줄:
 
 
 
 
  
<h5>관련도서</h5>
+
==관련도서==
  
 
*  도서내검색<br>
 
*  도서내검색<br>
114번째 줄: 105번째 줄:
  
 
 
 
 
 
 
 
 
<h5>링크</h5>
 
 
* [http://www.ams.org/news/math-in-the-media/mathdigest-index Summaries of Media Coverage of Math]
 
*  구글 블로그 검색<br>
 
** http://blogsearch.google.com/blogsearch?q=
 

2012년 10월 19일 (금) 17:23 판

개요

  • 자연수 n에 대한 잉여계의 부분집합 A에 대하여, 다음과 같은 감마함수의 곱이 언제 닫힌 형태로 표현되는가의 문제
    \(\prod_{k\in A}\Gamma(\frac{k}{n})\)

 

 

\(\Gamma \left(\frac{1}{6}\right) \Gamma \left(\frac{5}{6}\right)=2\sqrt{\pi }\)

\(\Gamma \left(\frac{1}{10}\right) \Gamma \left(\frac{3}{10}\right) \Gamma \left(\frac{7}{10}\right) \Gamma \left(\frac{9}{10}\right)=4 \pi ^2\)

\(\Gamma \left(\frac{1}{14}\right) \Gamma \left(\frac{9}{14}\right) \Gamma \left(\frac{11}{14}\right)=4{\pi ^{3/2}}\)

\(\Gamma \left(\frac{3}{14}\right) \Gamma \left(\frac{5}{14}\right) \Gamma \left(\frac{13}{14}\right)=2\pi ^{3/2}\)

\(\Gamma \left(\frac{1}{18}\right) \Gamma \left(\frac{5}{18}\right) \Gamma \left(\frac{7}{18}\right) \Gamma \left(\frac{11}{18}\right) \Gamma \left(\frac{13}{18}\right) \Gamma \left(\frac{17}{18}\right)=8 \pi ^3\)

\(\Gamma \left(\frac{1}{22}\right) \Gamma \left(\frac{3}{22}\right) \Gamma \left(\frac{5}{22}\right) \Gamma \left(\frac{7}{22}\right) \Gamma \left(\frac{9}{22}\right) \Gamma \left(\frac{13}{22}\right) \Gamma \left(\frac{15}{22}\right) \Gamma \left(\frac{17}{22}\right) \Gamma \left(\frac{19}{22}\right) \Gamma \left(\frac{21}{22}\right)=32 \pi ^5\)

\(\Gamma \left(\frac{1}{26}\right) \Gamma \left(\frac{3}{26}\right) \Gamma \left(\frac{5}{26}\right) \Gamma \left(\frac{7}{26}\right) \Gamma \left(\frac{9}{26}\right) \Gamma \left(\frac{11}{26}\right) \Gamma \left(\frac{15}{26}\right) \Gamma \left(\frac{17}{26}\right) \Gamma \left(\frac{19}{26}\right) \Gamma \left(\frac{21}{26}\right) \Gamma \left(\frac{23}{26}\right) \Gamma \left(\frac{25}{26}\right)=64 \pi ^6\)

\(\Gamma \left(\frac{1}{30}\right) \Gamma \left(\frac{17}{30}\right) \Gamma \left(\frac{19}{30}\right) \Gamma \left(\frac{23}{30}\right)=8 \pi ^2\)

\(\Gamma \left(\frac{1}{34}\right) \Gamma \left(\frac{9}{34}\right) \Gamma \left(\frac{13}{34}\right) \Gamma \left(\frac{15}{34}\right) \Gamma \left(\frac{19}{34}\right) \Gamma \left(\frac{21}{34}\right) \Gamma \left(\frac{25}{34}\right) \Gamma \left(\frac{33}{34}\right)=16 \pi ^4\)

 

 

역사

 

 

 

메모

 

관련된 항목들

 

 

수학용어번역

 

 

 

사전 형태의 자료

 

 

관련논문

 

 

관련도서