"Harmonic oscillator in quantum mechanics"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
1번째 줄: 1번째 줄:
<h5>introduction</h5>
 
 
 
 
 
 
 
 
 
 
 
 
<h5>harmonic oscillator in classical mechanics</h5>
 
<h5>harmonic oscillator in classical mechanics</h5>
  
53번째 줄: 45번째 줄:
  
 
* [[Schrodinger equation]]
 
* [[Schrodinger equation]]
 +
 +
<math>E \psi = -\frac{\hbar^2}{2m}{\partial^2 \psi \over \partial x^2} + V(x)\psi</math>
 +
 +
<math>V(x)=\frac{k}{2}x^2</math>
 +
 +
 
  
 
 
 
 
75번째 줄: 73번째 줄:
  
 
<h5>Green's funtion</h5>
 
<h5>Green's funtion</h5>
 
 
 
 
 
 
 
<h5>history</h5>
 
 
* http://www.google.com/search?hl=en&tbs=tl:1&q=
 
  
 
 
 
 
107번째 줄: 97번째 줄:
  
 
 
 
 
 
 
 
 
<h5>books</h5>
 
 
 
 
 
* [[2010년 books and articles]]<br>
 
* http://gigapedia.info/1/
 
* http://gigapedia.info/1/
 
* http://www.amazon.com/s/ref=nb_ss_gw?url=search-alias%3Dstripbooks&field-keywords=
 
  
 
 
 
 
127번째 줄: 106번째 줄:
 
* [http://web.physik.rwth-aachen.de/%7Emeden/vielteilchenneu/skriptka2.pdf http://web.physik.rwth-aachen.de/~meden/vielteilchenneu/skriptka2.pdf]
 
* [http://web.physik.rwth-aachen.de/%7Emeden/vielteilchenneu/skriptka2.pdf http://web.physik.rwth-aachen.de/~meden/vielteilchenneu/skriptka2.pdf]
 
* [http://www.odu.edu/%7Ejdudek/lecture_notes/GradQM_Second_Semester/ProblemSet0.pdf http://www.odu.edu/~jdudek/lecture_notes/GradQM_Second_Semester/ProblemSet0.pdf]
 
* [http://www.odu.edu/%7Ejdudek/lecture_notes/GradQM_Second_Semester/ProblemSet0.pdf http://www.odu.edu/~jdudek/lecture_notes/GradQM_Second_Semester/ProblemSet0.pdf]
 
 
 
 
 
 
 
<h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">articles</h5>
 
 
 
 
 
* http://www.ams.org/mathscinet
 
* http://www.zentralblatt-math.org/zmath/en/
 
* http://arxiv.org/
 
* http://www.pdf-search.org/
 
* http://pythagoras0.springnote.com/
 
* [http://math.berkeley.edu/%7Ereb/papers/index.html http://math.berkeley.edu/~reb/papers/index.html]
 
* http://dx.doi.org/
 
 
 
 
 
 
 
 
<h5>question and answers(Math Overflow)</h5>
 
 
* http://mathoverflow.net/search?q=
 
* http://mathoverflow.net/search?q=
 
 
 
 
 
 
 
 
<h5>blogs</h5>
 
 
*  구글 블로그 검색<br>
 
**  http://blogsearch.google.com/blogsearch?q=<br>
 
** http://blogsearch.google.com/blogsearch?q=
 
* http://ncatlab.org/nlab/show/HomePage
 
 
 
 
 
 
 
 
<h5>experts on the field</h5>
 
 
* http://arxiv.org/
 
 
 
 
 
 
 
 
<h5>links</h5>
 
 
* [http://detexify.kirelabs.org/classify.html Detexify2 - LaTeX symbol classifier]
 
* [http://pythagoras0.springnote.com/pages/1947378 수식표현 안내]
 
* [http://www.research.att.com/%7Enjas/sequences/index.html The On-Line Encyclopedia of Integer Sequences]
 
* http://functions.wolfram.com/
 

2012년 2월 13일 (월) 06:42 판

harmonic oscillator in classical mechanics
  • 질량 m, frequency \(\omega\) 인 조화진동자
  • 해밀토니안
    \(H(p,q)=\frac{p^2}{2m}+\frac{m}{2}\omega^{2}q^2\)
  • 해밀턴 방정식
    \(\dot{q}=\partial H/\partial p=\frac{p}{m}\)
    \(\dot{p}=-\partial H/\partial q=-m\omega^{2}q\)
  • 운동방정식
    \(\ddot{x}=-\omega^{2} x\) 즉 \(\ddot{x}+\omega^{2} x=0\)

 

 

quantum harmonic oscillator
  • 해밀토니안
    \(H(P,X)=\frac{P^2}{2m}+\frac{m}{2}\omega^{2}X^2\)

 

 

creation and annhilation operators
  • the position operators and momentum operators satisfy the relation
    \([X,P] = X P - P X = i \hbar\)Heisenberg group and Heisenberg algebra
  • define operators as follows
    \(a =\sqrt{m\omega \over 2\hbar} \left(x + {i \over m \omega} p \right)\)
    \(a^{\dagger} =\sqrt{m \omega \over 2\hbar} \left( x - {i \over m \omega} p \right)\)
  • Hamiltonian
    \(H = \hbar \omega \left(a^{\dagger}a + 1/2\right)\)
  • Commutation relation
    \(\left[a , a^{\dagger} \right] = 1\)
    \(\left[ H, a \right]= - \hbar \omega a\)
    \(\left[ H, a^\dagger \right] = \hbar \omega a^\dagger\)

 

 

energy  eigenstates
  • Assume that Planck’s constant equals 1
  • a harmonic oscillator that vibrates with frequency \(\omega\) can have energy \(\frac{\omega}{2}, (1 +\frac{1}{2})\omega, (2 +\frac{1}{2})\omega,(3 +\frac{1}{2})\omega,\cdots\) in units where
  • The lowest energy is not zero! It’s \(\omega/2\). This is called the ground state energy of the oscillator.

 

 

Schrodinger equation

\(E \psi = -\frac{\hbar^2}{2m}{\partial^2 \psi \over \partial x^2} + V(x)\psi\)

\(V(x)=\frac{k}{2}x^2\)

 

 

 

path integral formulation

 

 

 

Groundstate correlation functions

 

 

 

Green's funtion

 

 

related items

 

 

encyclopedia

 

 

 

expositions