"Harmonic oscillator in quantum mechanics"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
1번째 줄: | 1번째 줄: | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
<h5>creation and annhilation operators</h5> | <h5>creation and annhilation operators</h5> | ||
2012년 2월 13일 (월) 06:53 판
creation and annhilation operators
- the position operators and momentum operators satisfy the relation
\([X,P] = X P - P X = i \hbar\)Heisenberg group and Heisenberg algebra - define operators as follows
\(a =\sqrt{m\omega \over 2\hbar} \left(x + {i \over m \omega} p \right)\)
\(a^{\dagger} =\sqrt{m \omega \over 2\hbar} \left( x - {i \over m \omega} p \right)\) - Hamiltonian
\(H = \hbar \omega \left(a^{\dagger}a + 1/2\right)\) - Commutation relation
\(\left[a , a^{\dagger} \right] = 1\)
\(\left[ H, a \right]= - \hbar \omega a\)
\(\left[ H, a^\dagger \right] = \hbar \omega a^\dagger\)
energy eigenstates
- Assume that Planck’s constant equals 1
- a harmonic oscillator that vibrates with frequency \(\omega\) can have energy \(\frac{\omega}{2}, (1 +\frac{1}{2})\omega, (2 +\frac{1}{2})\omega,(3 +\frac{1}{2})\omega,\cdots\) in units where
- The lowest energy is not zero! It’s \(\omega/2\). This is called the ground state energy of the oscillator.
Schrodinger equation
\(E \psi = -\frac{\hbar^2}{2m}{\partial^2 \psi \over \partial x^2} + V(x)\psi\)
\(V(x)=\frac{k}{2}x^2\)
path integral formulation
Groundstate correlation functions
Green's funtion
encyclopedia
- http://ko.wikipedia.org/wiki/양자조화진동자
- http://en.wikipedia.org/wiki/Quantum_harmonic_oscillator
- http://en.wikipedia.org/wiki/
- http://www.scholarpedia.org/
- http://www.proofwiki.org/wiki/
- Princeton companion to mathematics(Companion_to_Mathematics.pdf)