"Harmonic oscillator in quantum mechanics"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
1번째 줄: 1번째 줄:
<h5>creation and annhilation operators</h5>
+
[[Heisenberg group and Heisenberg algebra]]
  
*  the position operators and momentum operators satisfy the relation<br><math>[X,P] = X P - P X = i \hbar</math>[[Heisenberg group and Heisenberg algebra]]<br>
+
[[Schrodinger equation]]
*  define operators as follows<br><math>a =\sqrt{m\omega \over 2\hbar} \left(x + {i \over m \omega} p \right)</math><br><math>a^{\dagger} =\sqrt{m \omega \over 2\hbar} \left( x - {i \over m \omega} p \right)</math><br>
+
 
*  Hamiltonian<br><math>H = \hbar \omega \left(a^{\dagger}a + 1/2\right)</math><br>
+
 
*  Commutation relation<br><math>\left[a , a^{\dagger} \right] = 1</math><br><math>\left[ H, a \right]= - \hbar \omega a</math><br><math>\left[ H, a^\dagger \right] =  \hbar \omega a^\dagger</math><br>
 
  
 
 
 
 
18번째 줄: 17번째 줄:
  
 
 
 
 
 
 
 
 
<h5>Schrodinger equation</h5>
 
 
* [[Schrodinger equation]]
 
 
<math>E \psi = -\frac{\hbar^2}{2m}{\partial^2 \psi \over \partial x^2} + V(x)\psi</math>
 
 
<math>V(x)=\frac{k}{2}x^2</math>
 
  
 
 
 
 

2012년 2월 13일 (월) 07:20 판

Heisenberg group and Heisenberg algebra

Schrodinger equation

 

 

 

energy  eigenstates
  • Assume that Planck’s constant equals 1
  • a harmonic oscillator that vibrates with frequency \(\omega\) can have energy \(\frac{\omega}{2}, (1 +\frac{1}{2})\omega, (2 +\frac{1}{2})\omega,(3 +\frac{1}{2})\omega,\cdots\) in units where
  • The lowest energy is not zero! It’s \(\omega/2\). This is called the ground state energy of the oscillator.

 

 

 

 

path integral formulation

 

 

 

Groundstate correlation functions

 

 

 

Green's funtion

 

 

related items

 

 

encyclopedia

 

 

 

expositions