"르장드르 다항식(associated Legendre polynomials)"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
1번째 줄: 1번째 줄:
 
==개요==
 
==개요==
  
*  미분방정식:<math>(1-x^2)\,y'' -2xy' + \left(\ell[\ell+1] - \frac{m^2}{1-x^2}\right)\,y = 0,\,</math><br>
+
*  미분방정식:<math>(1-x^2)\,y'' -2xy' + \left(\ell[\ell+1] - \frac{m^2}{1-x^2}\right)\,y = 0,\,</math>
*  미분방정식의 해:<math>P_\ell^{m}(x) = (-1)^m\ (1-x^2)^{m/2}\ \frac{d^m}{dx^m}\left(P_\ell(x)\right)\,</math><br> 여기서 <math>P_\ell(x)</math> 은 [[르장드르 다항식]]<br>
+
*  미분방정식의 해:<math>P_\ell^{m}(x) = (-1)^m\ (1-x^2)^{m/2}\ \frac{d^m}{dx^m}\left(P_\ell(x)\right)\,</math> 여기서 <math>P_\ell(x)</math> 은 [[르장드르 다항식]]
*  l과 m이 일반적인 복소수인 경우는 http://en.wikipedia.org/wiki/Legendre_function 참조<br>
+
*  l과 m이 일반적인 복소수인 경우는 http://en.wikipedia.org/wiki/Legendre_function 참조
  
 
 
 
 
57번째 줄: 57번째 줄:
 
* 단어사전 http://www.google.com/dictionary?langpair=en|ko&q=
 
* 단어사전 http://www.google.com/dictionary?langpair=en|ko&q=
 
* 발음사전 http://www.forvo.com/search/
 
* 발음사전 http://www.forvo.com/search/
* [http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=&fstr= 대한수학회 수학 학술 용어집]<br>
+
* [http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=&fstr= 대한수학회 수학 학술 용어집]
 
** http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=eng_term&fstr=
 
** http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=eng_term&fstr=
 
* [http://www.nktech.net/science/term/term_l.jsp?l_mode=cate&s_code_cd=MA 남·북한수학용어비교]
 
* [http://www.nktech.net/science/term/term_l.jsp?l_mode=cate&s_code_cd=MA 남·북한수학용어비교]

2020년 11월 13일 (금) 07:19 판

개요

  • 미분방정식\[(1-x^2)\,y'' -2xy' + \left(\ell[\ell+1] - \frac{m^2}{1-x^2}\right)\,y = 0,\,\]
  • 미분방정식의 해\[P_\ell^{m}(x) = (-1)^m\ (1-x^2)^{m/2}\ \frac{d^m}{dx^m}\left(P_\ell(x)\right)\,\] 여기서 \(P_\ell(x)\) 은 르장드르 다항식
  • l과 m이 일반적인 복소수인 경우는 http://en.wikipedia.org/wiki/Legendre_function 참조

 

 

 

예: l=2 인 경우

\(P_{2}^{0}(x)=\frac{1}{2}(3x^{2}-1)\)

\(P_{2}^{1}(x)=-3x(1-x^2)^{1/2}\)

\(P_{2}^{2}(x)=3(1-x^2)\)

 

 

 

역사

 

 

 

메모

 

 

관련된 항목들

 

 

수학용어번역

 

 

사전 형태의 자료