"겔만 행렬(Gell-Mann matrices)"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
10번째 줄: 10번째 줄:
  
 
<math>\left( \begin{array}{ccc}  0 & 1 & 0 \\  1 & 0 & 0 \\  0 & 0 & 0 \end{array} \right),\left( \begin{array}{ccc}  0 & -i & 0 \\  i & 0 & 0 \\  0 & 0 & 0 \end{array} \right),\left( \begin{array}{ccc}  1 & 0 & 0 \\  0 & -1 & 0 \\  0 & 0 & 0 \end{array} \right),\left( \begin{array}{ccc}  0 & 0 & 1 \\  0 & 0 & 0 \\  1 & 0 & 0 \end{array} \right),\left( \begin{array}{ccc}  0 & 0 & -i \\  0 & 0 & 0 \\  i & 0 & 0 \end{array} \right),\left( \begin{array}{ccc}  0 & 0 & 0 \\  0 & 0 & 1 \\  0 & 1 & 0 \end{array} \right),\left( \begin{array}{ccc}  0 & 0 & 0 \\  0 & 0 & -i \\  0 & i & 0 \end{array} \right),\left( \begin{array}{ccc}  \frac{1}{\sqrt{3}} & 0 & 0 \\  0 & \frac{1}{\sqrt{3}} & 0 \\  0 & 0 & -\frac{2}{\sqrt{3}} \end{array} \right)</math>
 
<math>\left( \begin{array}{ccc}  0 & 1 & 0 \\  1 & 0 & 0 \\  0 & 0 & 0 \end{array} \right),\left( \begin{array}{ccc}  0 & -i & 0 \\  i & 0 & 0 \\  0 & 0 & 0 \end{array} \right),\left( \begin{array}{ccc}  1 & 0 & 0 \\  0 & -1 & 0 \\  0 & 0 & 0 \end{array} \right),\left( \begin{array}{ccc}  0 & 0 & 1 \\  0 & 0 & 0 \\  1 & 0 & 0 \end{array} \right),\left( \begin{array}{ccc}  0 & 0 & -i \\  0 & 0 & 0 \\  i & 0 & 0 \end{array} \right),\left( \begin{array}{ccc}  0 & 0 & 0 \\  0 & 0 & 1 \\  0 & 1 & 0 \end{array} \right),\left( \begin{array}{ccc}  0 & 0 & 0 \\  0 & 0 & -i \\  0 & i & 0 \end{array} \right),\left( \begin{array}{ccc}  \frac{1}{\sqrt{3}} & 0 & 0 \\  0 & \frac{1}{\sqrt{3}} & 0 \\  0 & 0 & -\frac{2}{\sqrt{3}} \end{array} \right)</math>
 +
 +
*  리대수 <math>\mathfrak{su}(3)</math> 의 기저<br>
 +
 +
 
  
 
 
 
 

2012년 7월 16일 (월) 21:12 판

이 항목의 수학노트 원문주소

 

 

개요

 

\(\left( \begin{array}{ccc} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{array} \right),\left( \begin{array}{ccc} 0 & -i & 0 \\ i & 0 & 0 \\ 0 & 0 & 0 \end{array} \right),\left( \begin{array}{ccc} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 0 \end{array} \right),\left( \begin{array}{ccc} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{array} \right),\left( \begin{array}{ccc} 0 & 0 & -i \\ 0 & 0 & 0 \\ i & 0 & 0 \end{array} \right),\left( \begin{array}{ccc} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{array} \right),\left( \begin{array}{ccc} 0 & 0 & 0 \\ 0 & 0 & -i \\ 0 & i & 0 \end{array} \right),\left( \begin{array}{ccc} \frac{1}{\sqrt{3}} & 0 & 0 \\ 0 & \frac{1}{\sqrt{3}} & 0 \\ 0 & 0 & -\frac{2}{\sqrt{3}} \end{array} \right)\)

  • 리대수 \(\mathfrak{su}(3)\) 의 기저

 

 

역사

 

 

 

메모

 

 

 

관련된 항목들

 

 

수학용어번역

 

 

매스매티카 파일 및 계산 리소스

 

 

사전 형태의 자료

 

 

리뷰논문, 에세이, 강의노트

 

 

 

관련논문

 

 

관련도서