"겔만 행렬(Gell-Mann matrices)"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
성질==
Pythagoras0 (토론 | 기여) 잔글 (찾아 바꾸기 – “<h5>” 문자열을 “==” 문자열로) |
Pythagoras0 (토론 | 기여) 잔글 (찾아 바꾸기 – “</h5>” 문자열을 “==” 문자열로) |
||
1번째 줄: | 1번째 줄: | ||
− | ==이 항목의 수학노트 원문주소 | + | ==이 항목의 수학노트 원문주소== |
5번째 줄: | 5번째 줄: | ||
− | ==개요 | + | ==개요== |
* a family of traceless Hermitian -matrices, orthonormalized<br><math>\left( \begin{array}{ccc} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{array} \right),\left( \begin{array}{ccc} 0 & -i & 0 \\ i & 0 & 0 \\ 0 & 0 & 0 \end{array} \right),\left( \begin{array}{ccc} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 0 \end{array} \right),\left( \begin{array}{ccc} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{array} \right),\left( \begin{array}{ccc} 0 & 0 & -i \\ 0 & 0 & 0 \\ i & 0 & 0 \end{array} \right),\left( \begin{array}{ccc} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{array} \right),\left( \begin{array}{ccc} 0 & 0 & 0 \\ 0 & 0 & -i \\ 0 & i & 0 \end{array} \right),\left( \begin{array}{ccc} \frac{1}{\sqrt{3}} & 0 & 0 \\ 0 & \frac{1}{\sqrt{3}} & 0 \\ 0 & 0 & -\frac{2}{\sqrt{3}} \end{array} \right)</math><br> | * a family of traceless Hermitian -matrices, orthonormalized<br><math>\left( \begin{array}{ccc} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{array} \right),\left( \begin{array}{ccc} 0 & -i & 0 \\ i & 0 & 0 \\ 0 & 0 & 0 \end{array} \right),\left( \begin{array}{ccc} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 0 \end{array} \right),\left( \begin{array}{ccc} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{array} \right),\left( \begin{array}{ccc} 0 & 0 & -i \\ 0 & 0 & 0 \\ i & 0 & 0 \end{array} \right),\left( \begin{array}{ccc} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{array} \right),\left( \begin{array}{ccc} 0 & 0 & 0 \\ 0 & 0 & -i \\ 0 & i & 0 \end{array} \right),\left( \begin{array}{ccc} \frac{1}{\sqrt{3}} & 0 & 0 \\ 0 & \frac{1}{\sqrt{3}} & 0 \\ 0 & 0 & -\frac{2}{\sqrt{3}} \end{array} \right)</math><br> | ||
17번째 줄: | 17번째 줄: | ||
− | <h5 style="margin: 0px; line-height: 2em;">성질 | + | <h5 style="margin: 0px; line-height: 2em;">성질== |
* <math>[g_i, g_j] = if^{ijk} g_k</math><br> | * <math>[g_i, g_j] = if^{ijk} g_k</math><br> | ||
27번째 줄: | 27번째 줄: | ||
− | ==역사 | + | ==역사== |
38번째 줄: | 38번째 줄: | ||
− | ==메모 | + | ==메모== |
* http://mathoverflow.net/questions/89331/why-the-gell-mann-matrices-in-the-su3-model-need-to-be-trace-orthogonal | * http://mathoverflow.net/questions/89331/why-the-gell-mann-matrices-in-the-su3-model-need-to-be-trace-orthogonal | ||
47번째 줄: | 47번째 줄: | ||
− | ==관련된 항목들 | + | ==관련된 항목들== |
53번째 줄: | 53번째 줄: | ||
− | ==수학용어번역 | + | ==수학용어번역== |
* 단어사전<br> | * 단어사전<br> | ||
70번째 줄: | 70번째 줄: | ||
− | ==매스매티카 파일 및 계산 리소스 | + | ==매스매티카 파일 및 계산 리소스== |
* https://docs.google.com/file/d/0B8XXo8Tve1cxak43OUd5QTRNVGs/edit | * https://docs.google.com/file/d/0B8XXo8Tve1cxak43OUd5QTRNVGs/edit | ||
85번째 줄: | 85번째 줄: | ||
− | ==사전 형태의 자료 | + | ==사전 형태의 자료== |
* http://ko.wikipedia.org/wiki/ | * http://ko.wikipedia.org/wiki/ | ||
97번째 줄: | 97번째 줄: | ||
− | ==리뷰논문, 에세이, 강의노트 | + | ==리뷰논문, 에세이, 강의노트== |
* http://arxiv.org/pdf/hep-ph/0109241.pdf | * http://arxiv.org/pdf/hep-ph/0109241.pdf | ||
105번째 줄: | 105번째 줄: | ||
− | ==관련논문 | + | ==관련논문== |
* http://www.jstor.org/action/doBasicSearch?Query= | * http://www.jstor.org/action/doBasicSearch?Query= | ||
115번째 줄: | 115번째 줄: | ||
− | ==관련도서 | + | ==관련도서== |
* M. Gell-Mann, Y. Ne'eman, "The eightfold way" , Benjamin (1964) | * M. Gell-Mann, Y. Ne'eman, "The eightfold way" , Benjamin (1964) |
2012년 11월 1일 (목) 10:35 판
이 항목의 수학노트 원문주소
개요
- a family of traceless Hermitian -matrices, orthonormalized
\(\left( \begin{array}{ccc} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{array} \right),\left( \begin{array}{ccc} 0 & -i & 0 \\ i & 0 & 0 \\ 0 & 0 & 0 \end{array} \right),\left( \begin{array}{ccc} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 0 \end{array} \right),\left( \begin{array}{ccc} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{array} \right),\left( \begin{array}{ccc} 0 & 0 & -i \\ 0 & 0 & 0 \\ i & 0 & 0 \end{array} \right),\left( \begin{array}{ccc} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{array} \right),\left( \begin{array}{ccc} 0 & 0 & 0 \\ 0 & 0 & -i \\ 0 & i & 0 \end{array} \right),\left( \begin{array}{ccc} \frac{1}{\sqrt{3}} & 0 & 0 \\ 0 & \frac{1}{\sqrt{3}} & 0 \\ 0 & 0 & -\frac{2}{\sqrt{3}} \end{array} \right)\)
- 리대수 \(\mathfrak{su}(3)\) 의 기저
- 쿼크를 다루기 위해 도입됨
- SU(3) 대칭성이 등장하는 게이지 이론 에서 사용된다