"Talk on Gross-Keating invariants"의 두 판 사이의 차이
imported>Pythagoras0 |
imported>Pythagoras0 |
||
112번째 줄: | 112번째 줄: | ||
$$ | $$ | ||
+ | |||
+ | In this section, we consider the formula of \cite{MR1213101} for the arithmetic intersection number of three modular correspondences from a computational perspective. As mentioned in the Introduction, this is the original context in which the Gross-Keating invariants have been introduced for ternary quadratic forms over $\Zp$. Let us denote the set of non-degenerate half-integral matrices with entries in $\Z$ by $\Zmat{n}$. We can regard $Q\in \Zmat{n}$ as an element of $\mat{n}{p}$ for any prime $p$. | ||
+ | |||
+ | For $m\in \Z_{\geq 1}$, let $\phi_m(X,Y)\in \Z[X,Y]$ be the classical modular polynomial; see \cite{MR1213101} and the references therein. Let $m_1,m_2,m_3\in \Z_{\geq 1}$. Gross and Keating showed that the cardinality of the quotient ring $\Z[X,Y]/(\phi_{m_1},\phi_{m_2},\phi_{m_3})$ is finite if and only if there is no positive definite binary quadratic form $a x^2+bxy+cy^2$ with $a,b,c\in \Z$ which represents the three integers $m_1,m_2,m_3$. Assume that $m_1,m_2,m_3$ satisfy this condition. Let $S=\mathrm{Spec}\, \Z[X,Y]$ and $T_m$ be the divisor on $S$ corresponding to $\phi_m$. We define the arithmetic intersection number as follows : | ||
+ | \begin{equation}\label{eqn:TTT} | ||
+ | \begin{aligned} | ||
+ | \intmult : & = \log \# \Z[X,Y]/(\phi_{m_1},\phi_{m_2},\phi_{m_3}) \\ | ||
+ | & = \sum_{p}n(p)\log p, | ||
+ | \end{aligned} | ||
+ | \end{equation} | ||
+ | with $n(p)=0$ for $p>4m_1m_2m_3$. Furthermore, Gross and Keating found an explicit formula for $n(p)$. | ||
+ | \begin{thm}\cite[Proposition 3.22]{MR1213101}\label{thm:GKformula} | ||
+ | Let $p$ be a prime. We have | ||
+ | $$ | ||
+ | n(p) = \frac{1}{2}\sum_{Q}\left(\prod_{l\mid \Delta,\, l\neq p} \beta_l(Q) \right)\cdot \alpha_p(Q), | ||
+ | $$ | ||
+ | with $\Delta = 4\det Q\in \Z$. The sum is over all positive definite matrices $Q\in \Zmat{3}$ with diagonal $(m_1,m_2,m_3)$ which are isotropic over $\Q_{l}$ for all $l\neq p$. Such $Q$ is anisotropic over $\Qp$ and $p$ divides $\Delta$. The quantities $\alpha_p(Q)$ and $\beta_p(Q)$ are given as follows : | ||
+ | Let $H = (a_1, a_2, a_3; \vep_1, \vep_2, \vep_3)$ be a naive EGK datum of $Q$ at regarded as elements of | ||
+ | $\mat{3}{p}$, as in (\ref{eqn:NEGKodd}) and (\ref{eqn:NEGKeven}). | ||
+ | |||
+ | When $a_1\equiv a_2 \pmod 2$ and $a_2<a_3$, we further define $\epsilon$ to be $\vep_2$. | ||
+ | If $a_1\equiv a_2 \pmod 2$, then $\alpha_p(Q)$ is equal to | ||
+ | $$ | ||
+ | \sum _{i=0}^{a_1-1} (i+1) (a_1+a_2+a_3-3 i)p^i +\sum _{i=a_1}^{(a_1+a_2-2)/2} (a_1+1) (2a_1+a_2+a_3-4 i) p^i+\frac{1}{2} (a_1+1) (a_3-a_2+1) p^{(a_1+a_2)/2}. | ||
+ | $$ | ||
+ | |||
+ | If $a_1\not\equiv a_2 \pmod 2$, then $\alpha_p(Q)$ is equal to | ||
+ | $$ | ||
+ | \sum_{i=0}^{a_1-1} (i+1) (a_1+a_2+a_3-3 i)p^i +\sum _{i=a_1}^{(a_1+a_2-1)/2} (a_1+1) (2a_1+a_2+a_3-4i)p^i. | ||
+ | $$ | ||
+ | |||
+ | If $a_1\equiv a_2 \pmod 2$ and either $\epsilon =1$ or $a_2=a_3$, then $\beta_p(Q)$ is equal to | ||
+ | $$ | ||
+ | \sum _{i=0}^{a_1-1} 2(i+1)p^i +\sum _{i=a_1}^{(a_1+a_2-2)/2} 2(a_1+1)p^i+(a_1+1) (a_3-a_2+1) p^{(a_1+a_2)/2}. | ||
+ | $$ | ||
+ | |||
+ | If $a_1\equiv a_2 \pmod 2$ and $\epsilon =-1$, then $\beta_p(Q)$ is equal to | ||
+ | $$ | ||
+ | \sum _{i=0}^{a_1-1} 2(i+1)p^i +\sum _{i=a_1}^{(a_1+a_2-2)/2} 2(a_1+1)p^i+(a_1+1) p^{(a_1+a_2)/2}. | ||
+ | $$ | ||
+ | |||
+ | If $a_1\not\equiv a_2 \pmod 2$, then $\beta_p(Q)$ is equal to | ||
+ | $$ | ||
+ | \sum _{i=0}^{a_1-1} 2(i+1)p^i +\sum _{i=a_1}^{(a_1+a_2-2)/2} 2(a_1+1)p^i. | ||
+ | $$ | ||
==related items== | ==related items== |
2018년 11월 11일 (일) 21:21 판
a classical introduction to Gross-Keating invaraiant
$ \newcommand{\Z}{\mathbb Z} \newcommand{\Zn}{\Z_{\geq 0}^n} \newcommand{\ord}{\mathrm{ord}} \newcommand{\calh}{\mathcal H} \newcommand{\frko}{\mathfrak o} \newcommand{\GL}{{\mathrm{GL}}} \newcommand{\GK}{\mathrm{GK}} $
Gross-Keating invariant
Let $B=(b_{ij})\in\calh_n(\frko)^{\rm nd}$. Let $S(B)$ be the set of all non-decreasing sequences $(a_1, \dots, a_n)\in\Zn$ such that \begin{align*} &\ord(b_{ii})\geq a_i \qquad\qquad\qquad\quad (1\leq i\leq n), \\ &\ord(2 b_{ij})\geq (a_i+a_j)/2 \qquad\; (1\leq i\leq j\leq n), \end{align*} and $\S(\{B\}):=\bigcup_{U\in\GL_n(\frko)} S(U^{t}BU)$. The Gross-Keating invariant $\GK(B)=(a_1, \dots, a_n)$ of $B$ is defined by \begin{align*} a_1&=\max_{(y_1, \dots)\in S(\{B\})} \,y_1, \\ a_2&=\max_{(a_1, y_2, \dots)\in S(\{B\})}\, y_2, \\ &\dots \\ a_n&=\max_{(a_1, a_2, \dots, a_{n-1}, y_n)\in S(\{B\})}\, y_n. \end{align*}
j-invariant
- \(q=e^{2\pi i\tau},\tau\in \mathbb{H}\)라 두자
- 타원 모듈라 j-함수는 다음과 같이 정의된다
\[ j(\tau)= {E_ 4(\tau)^3\over \Delta(\tau)}=q^{-1}+744+196884q+21493760q^2+\cdots \] 여기서 \[ E_ 4(\tau)=1+240\sum_{n>0}\sigma_3(n)q^n= 1+240q+2160q^2+\cdots,\quad \sigma_3(n)=\sum_{d|n}d^3\]는 아이젠슈타인 급수(Eisenstein series), \[\Delta(\tau)= q\prod_{n>0}(1-q^n)^{24}= q-24q+252q^2+\cdots\] 는 판별식 함수
singular moduli
- quadratic imaginary number 에서의 값
- thm
If $E$ has complex multiplication, then $j(E)$ is an algebraic integer of degree $h_K$. Especially if $h_K=1$, then $j(E)\in \mathbb{Z}$
- 예 :
$$j(\frac {-1+\sqrt{-163}} {2})=-262537412640768000=-640320^3$$
- 타원 모듈라 j-함수의 singular moduli 참조
- 판별식이 -23인 세 이차형식 (숫자 23과 다항식 x³-x+1 참조)
$$ x^2+x+6,2 x^2-x+3,2 x^2+x+3 $$ 의 상반평면에서의 해를 구하여, 다음의 값을 생각하자 $$ j\left(\frac{1}{2} \left(-1+i \sqrt{23}\right)\right),j\left(\frac{1}{4} \left(1+i \sqrt{23}\right)\right),j\left(\frac{1}{4} \left(-1+i \sqrt{23}\right)\right)$$
- 이들은 대수적 정수이며, 다음 다항식의 해가 된다
$$ x^3+3491750 x^2-5151296875 x+12771880859375 $$
Siegel-Weil formula
- thm
For a positive definite even unimodular lattice $L$, $$\left( \sum_{M\in {\rm gen}(L)}\frac{\Theta_M^{(g)}(Z)}{|{\rm Aut}(M)|}\right)\,\cdot\, \left(\sum_{M\in {\rm gen}(L)}\frac{1}{|{\rm Aut}(M)|}\right)^{-1}= E^{(g)}_{k}(Z),$$
Moreover, the Fourier coefficients $a_{E}(N)$ of $E$ can be expressed as an infinite product of local densities $$ a_{E}(N)=\prod_{p:\text{primes}}\beta_{L,p}(N) \label{lp} $$
mass formula
- for a half-integral $N$,
$$ a_{E}(N)=\left( \sum_{M\in {\rm gen}(L)}\frac{r_M(N)}{|{\rm Aut}(M)|}\right)\,\cdot\, \left(\sum_{M\in {\rm gen}(L)}\frac{1}{|{\rm Aut}(M)|}\right)^{-1} $$ where $\Theta_M^{(g)}(Z)=\sum_{N}r_M(N)\exp\left(2\pi i \operatorname{Tr}(N\tau)\right)$
- if $2N$ is a Gram matrix of $L$, then we obtain
$$ a_{E}(N)=\left(\sum_{M\in {\rm gen}(L)}\frac{1}{|{\rm Aut}(M)|}\right)^{-1} $$ as $$ r_M(N) = \begin{cases} |\operatorname{Aut}(L)|, & \text{if }L\sim M \\ 0, & \text{if }L\nsim M \\ \end{cases} $$
- then we can express
$$ a_{E}(N)=\left(\sum_{M\in {\rm gen}(L)}\frac{1}{|{\rm Aut}(M)|}\right)^{-1} $$ in terms of local densities \ref{lp}, which gives the Smith-Minkowski-Siegel mass formula
modular polynomials
- 타원 모듈라 j-함수 (elliptic modular function, j-invariant)
- $\Phi_n\bigl(j(n\tau),j(\tau)\bigr)=0$를 만족하는 기약다항식 $\Phi_n(x,y)\in{\mathbb{
Z}}[x,y]$이 존재하며, 이 때 차수는 $x,y$ 각각에 대하여 $\psi(n)=n\prod_{p|n}(1+1/p)$로 주어진다
예
- $n=2$
$$ \Phi_2(x,y)=x^3+y^3-x^2 y^2+1488 (x^2 y + x y^2)-162000 (x^2+y^2) +40773375 x y+8748000000 (x + y)-157464000000000 $$
- $n=3$
$$ \begin{aligned} \Phi_3(x,y) &=x^4+y^4-x^3 y^3+36864000 \left(x^3+y^3\right)-1069956 \left(x^3 y+x y^3\right)+2587918086 x^2 y^2 \\ &+452984832000000 \left(x^2+y^2\right)+8900222976000 \left(x^2 y+x y^2\right)+2232 \left(x^3 y^2+x^2 y^3\right) \\ &-770845966336000000 x y+1855425871872000000000 (x+y) \end{aligned} $$
In this section, we consider the formula of \cite{MR1213101} for the arithmetic intersection number of three modular correspondences from a computational perspective. As mentioned in the Introduction, this is the original context in which the Gross-Keating invariants have been introduced for ternary quadratic forms over $\Zp$. Let us denote the set of non-degenerate half-integral matrices with entries in $\Z$ by $\Zmat{n}$. We can regard $Q\in \Zmat{n}$ as an element of $\mat{n}{p}$ for any prime $p$.
For $m\in \Z_{\geq 1}$, let $\phi_m(X,Y)\in \Z[X,Y]$ be the classical modular polynomial; see \cite{MR1213101} and the references therein. Let $m_1,m_2,m_3\in \Z_{\geq 1}$. Gross and Keating showed that the cardinality of the quotient ring $\Z[X,Y]/(\phi_{m_1},\phi_{m_2},\phi_{m_3})$ is finite if and only if there is no positive definite binary quadratic form $a x^2+bxy+cy^2$ with $a,b,c\in \Z$ which represents the three integers $m_1,m_2,m_3$. Assume that $m_1,m_2,m_3$ satisfy this condition. Let $S=\mathrm{Spec}\, \Z[X,Y]$ and $T_m$ be the divisor on $S$ corresponding to $\phi_m$. We define the arithmetic intersection number as follows : \begin{equation}\label{eqn:TTT} \begin{aligned} \intmult : & = \log \# \Z[X,Y]/(\phi_{m_1},\phi_{m_2},\phi_{m_3}) \\ & = \sum_{p}n(p)\log p, \end{aligned} \end{equation} with $n(p)=0$ for $p>4m_1m_2m_3$. Furthermore, Gross and Keating found an explicit formula for $n(p)$. \begin{thm}\cite[Proposition 3.22]{MR1213101}\label{thm:GKformula} Let $p$ be a prime. We have $$ n(p) = \frac{1}{2}\sum_{Q}\left(\prod_{l\mid \Delta,\, l\neq p} \beta_l(Q) \right)\cdot \alpha_p(Q), $$ with $\Delta = 4\det Q\in \Z$. The sum is over all positive definite matrices $Q\in \Zmat{3}$ with diagonal $(m_1,m_2,m_3)$ which are isotropic over $\Q_{l}$ for all $l\neq p$. Such $Q$ is anisotropic over $\Qp$ and $p$ divides $\Delta$. The quantities $\alpha_p(Q)$ and $\beta_p(Q)$ are given as follows : Let $H = (a_1, a_2, a_3; \vep_1, \vep_2, \vep_3)$ be a naive EGK datum of $Q$ at regarded as elements of $\mat{3}{p}$, as in (\ref{eqn:NEGKodd}) and (\ref{eqn:NEGKeven}).
When $a_1\equiv a_2 \pmod 2$ and $a_2<a_3$, we further define $\epsilon$ to be $\vep_2$. If $a_1\equiv a_2 \pmod 2$, then $\alpha_p(Q)$ is equal to $$ \sum _{i=0}^{a_1-1} (i+1) (a_1+a_2+a_3-3 i)p^i +\sum _{i=a_1}^{(a_1+a_2-2)/2} (a_1+1) (2a_1+a_2+a_3-4 i) p^i+\frac{1}{2} (a_1+1) (a_3-a_2+1) p^{(a_1+a_2)/2}. $$
If $a_1\not\equiv a_2 \pmod 2$, then $\alpha_p(Q)$ is equal to $$ \sum_{i=0}^{a_1-1} (i+1) (a_1+a_2+a_3-3 i)p^i +\sum _{i=a_1}^{(a_1+a_2-1)/2} (a_1+1) (2a_1+a_2+a_3-4i)p^i. $$
If $a_1\equiv a_2 \pmod 2$ and either $\epsilon =1$ or $a_2=a_3$, then $\beta_p(Q)$ is equal to $$ \sum _{i=0}^{a_1-1} 2(i+1)p^i +\sum _{i=a_1}^{(a_1+a_2-2)/2} 2(a_1+1)p^i+(a_1+1) (a_3-a_2+1) p^{(a_1+a_2)/2}. $$
If $a_1\equiv a_2 \pmod 2$ and $\epsilon =-1$, then $\beta_p(Q)$ is equal to $$ \sum _{i=0}^{a_1-1} 2(i+1)p^i +\sum _{i=a_1}^{(a_1+a_2-2)/2} 2(a_1+1)p^i+(a_1+1) p^{(a_1+a_2)/2}. $$
If $a_1\not\equiv a_2 \pmod 2$, then $\beta_p(Q)$ is equal to $$ \sum _{i=0}^{a_1-1} 2(i+1)p^i +\sum _{i=a_1}^{(a_1+a_2-2)/2} 2(a_1+1)p^i. $$