"Sphere Packings, Lattices and Groups"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
imported>Pythagoras0
imported>Pythagoras0
10번째 줄: 10번째 줄:
 
===type I codes===
 
===type I codes===
 
* {{수학노트|url=맥윌리엄스_항등식_(MacWilliams_Identity)}}
 
* {{수학노트|url=맥윌리엄스_항등식_(MacWilliams_Identity)}}
 +
 +
 +
==extremal even unimodular lattices==
 +
* Nebe, Gabriele, and Richard Parker. “On Extremal Even Unimodular 72-Dimensional Lattices.” Mathematics of Computation 83, no. 287 (2014): 1489–94. doi:10.1090/S0025-5718-2013-02744-5.
 +
* Nebe, Gabriele. “On Automorphisms of Extremal Even Unimodular Lattices of Dimension 48.” arXiv:1212.0865 [math], December 4, 2012. http://arxiv.org/abs/1212.0865.
  
  

2014년 7월 7일 (월) 23:03 판

some conventions

  • $q=e^{\pi i z}$

chapter 2

  • section 2.4 Integral lattices

chapter 7

  • type I = self-dual, $\operatorname{wt}(C)\equiv 0 \mod 2$ and there exists $C\in \mathcal{C}$ such that $\operatorname{wt}(C)\equiv 2 \mod 4$
  • type II = even, self-dual

type I codes


extremal even unimodular lattices

  • Nebe, Gabriele, and Richard Parker. “On Extremal Even Unimodular 72-Dimensional Lattices.” Mathematics of Computation 83, no. 287 (2014): 1489–94. doi:10.1090/S0025-5718-2013-02744-5.
  • Nebe, Gabriele. “On Automorphisms of Extremal Even Unimodular Lattices of Dimension 48.” arXiv:1212.0865 [math], December 4, 2012. http://arxiv.org/abs/1212.0865.


computational resource