"격자의 세타함수"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
(피타고라스님이 이 페이지의 위치를 <a href="/pages/6151647">세타함수 이론</a>페이지로 이동하였습니다.) |
|||
1번째 줄: | 1번째 줄: | ||
− | <h5 style="line-height: 3.428em; | + | <h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">이 항목의 수학노트 원문주소</h5> |
+ | |||
+ | * | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | <h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">정의</h5> | ||
* 격자 <math>L</math> 에 대하여 세타함수를 다음과 같이 정의함<br><math>\theta_L(\tau)=\sum_{x\in L}q^{\frac{x^2}{2}}, q=e^{2\pi i \tau}</math><br> | * 격자 <math>L</math> 에 대하여 세타함수를 다음과 같이 정의함<br><math>\theta_L(\tau)=\sum_{x\in L}q^{\frac{x^2}{2}}, q=e^{2\pi i \tau}</math><br> | ||
− | * 여기서 <math>x^2</math> 은 벡터 <math>x</math>의 norm 을 가리킴.<br> | + | * 여기서 <math>x^2</math> 은 벡터 <math>x</math>의 norm 을 가리킴.<br> |
+ | |||
+ | |||
+ | |||
+ | |||
− | <h5 style="line-height: 2em; margin | + | <h5 style="line-height: 2em; margin: 0px;">자코비 세타함수의 경우</h5> |
* 격자가 정수집합 <math>\mathbb Z</math> 로 주어진 경우의 세타함수<br><math>\theta(\tau)=\sum_{n\in \mathbb Z}q^{\frac{n^2}{2}}= \sum_{n=-\infty}^\infty e^{\pi i n^2 \tau}</math>, <math>q=e^{2\pi i \tau}</math><br> | * 격자가 정수집합 <math>\mathbb Z</math> 로 주어진 경우의 세타함수<br><math>\theta(\tau)=\sum_{n\in \mathbb Z}q^{\frac{n^2}{2}}= \sum_{n=-\infty}^\infty e^{\pi i n^2 \tau}</math>, <math>q=e^{2\pi i \tau}</math><br> | ||
10번째 줄: | 22번째 줄: | ||
− | <h5 style="line-height: 2em; margin | + | <h5 style="line-height: 2em; margin: 0px;">세타함수의 모듈라 성질</h5> |
(정리) | (정리) | ||
24번째 줄: | 36번째 줄: | ||
[[포아송의 덧셈 공식]]을 사용하자. | [[포아송의 덧셈 공식]]을 사용하자. | ||
− | + | ||
− | <h5 style="line-height: 3.428em; margin | + | <h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">관련된 항목들</h5> |
* [[자코비 세타함수]]<br> | * [[자코비 세타함수]]<br> | ||
− | |||
− |
2012년 3월 29일 (목) 11:41 판
이 항목의 수학노트 원문주소
정의
- 격자 \(L\) 에 대하여 세타함수를 다음과 같이 정의함
\(\theta_L(\tau)=\sum_{x\in L}q^{\frac{x^2}{2}}, q=e^{2\pi i \tau}\) - 여기서 \(x^2\) 은 벡터 \(x\)의 norm 을 가리킴.
자코비 세타함수의 경우
- 격자가 정수집합 \(\mathbb Z\) 로 주어진 경우의 세타함수
\(\theta(\tau)=\sum_{n\in \mathbb Z}q^{\frac{n^2}{2}}= \sum_{n=-\infty}^\infty e^{\pi i n^2 \tau}\), \(q=e^{2\pi i \tau}\)
세타함수의 모듈라 성질
(정리)
rank가 2n의 even unimodular 격자 \(L\)에 대하여 , 세타함수 \(\theta_L\) 은 weight n인 모듈라 형식이 된다.
(증명)
먼저 cusp 에서의 푸리에 급수 조건은 정의에 만족된다. ( \(\theta_L(i\infty)=1\) 도 알 수 있음.)
포아송의 덧셈 공식을 사용하자.