"Hirota bilinear method"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
57번째 줄: 57번째 줄:
 
<h5>books</h5>
 
<h5>books</h5>
  
 +
* Yoshimasa matsuno Bilinear Transformation Method
 
* Jarmo Hietarinta: Introduction to the Hirota Bilinear Method, volume 638 of Lect. Notes Phys. New York: Springer-Verlag 2004.
 
* Jarmo Hietarinta: Introduction to the Hirota Bilinear Method, volume 638 of Lect. Notes Phys. New York: Springer-Verlag 2004.
 
* [[2011년 books and articles]]
 
* [[2011년 books and articles]]
68번째 줄: 69번째 줄:
 
<h5>expositions</h5>
 
<h5>expositions</h5>
  
* [http://arxiv.org/abs/nlin/0603008 Notes on solutions in Wronskian form to soliton equations: KdV-type], 2006
+
* Bilinear Formalism in Soliton TheoryJ. Satsuma http://www.springerlink.com/content/pv618enuumbm98bx/
*  
 
 
* [http://users.utu.fi/hietarin/Bangalore.pdf Hirota’s bilinear method and integrability] Jarmo Hietarinta, 2008
 
* [http://users.utu.fi/hietarin/Bangalore.pdf Hirota’s bilinear method and integrability] Jarmo Hietarinta, 2008
 
* Goldstein, P. P. 2007. “Hints on the Hirota Bilinear Method”. <em>Acta Physica Polonica A</em> 112 (12월 1): 1171. http://adsabs.harvard.edu/abs/2007AcPPA.112.1171G
 
* Goldstein, P. P. 2007. “Hints on the Hirota Bilinear Method”. <em>Acta Physica Polonica A</em> 112 (12월 1): 1171. http://adsabs.harvard.edu/abs/2007AcPPA.112.1171G
82번째 줄: 82번째 줄:
 
* [http://front.math.ucdavis.edu/0905.3776 Integrable deformations of CFTs and the discrete Hirota equations]<br>
 
* [http://front.math.ucdavis.edu/0905.3776 Integrable deformations of CFTs and the discrete Hirota equations]<br>
 
**  Werner Nahm, Sinéad Keegan, 2009<br>
 
**  Werner Nahm, Sinéad Keegan, 2009<br>
* Ma, Wen-Xiu, and Yuncheng You. 2005. Solving the Korteweg-de Vries Equation by Its Bilinear Form: Wronskian Solutions. Transactions of the American Mathematical Society 357, no. 5 (May 1): 1753-1778. 
+
*  
  
 
* http://www.ams.org/mathscinet
 
* http://www.ams.org/mathscinet

2011년 7월 28일 (목) 09:01 판

introduction

 

 

 

 

Advantages of the bilinear formalism:
  • Multisoliton solutions easy to construct.
  • The dependent variables are usually tau-functions, with good properties.
  • Natural for the Sato theory, which explains hierarchies of integrable equations (Jimbo and Miwa)
  • Suitable for classification: the bilinear form strongly restricts the freedom of changing dependent variables.

 

 

example

http://www.thehcmr.org/issue2_1/soliton.pdf

 

history

 

 

related items

 

 

encyclopedia

 

 

books

 

 

expositions

 

 

articles

 

 

question and answers(Math Overflow)

 

 

blogs

 

 

experts on the field

 

 

links