"Hirota bilinear method"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
imported>Pythagoras0
잔글 (찾아 바꾸기 – “* Princeton companion to mathematics(Companion_to_Mathematics.pdf)” 문자열을 “” 문자열로)
imported>Pythagoras0
26번째 줄: 26번째 줄:
 
 
 
 
  
==history==
 
 
* http://www.google.com/search?hl=en&tbs=tl:1&q=
 
 
 
 
  
 
 
 
 
50번째 줄: 45번째 줄:
 
* http://en.wikipedia.org/wiki/
 
* http://en.wikipedia.org/wiki/
 
* http://mathworld.wolfram.com/HirotaEquation.html
 
* http://mathworld.wolfram.com/HirotaEquation.html
* http://www.scholarpedia.org/
 
* [http://eom.springer.de/ http://eom.springer.de]
 
* http://www.proofwiki.org/wiki/
 
 
 
 
 
 
 
  
62번째 줄: 52번째 줄:
  
 
* Yoshimasa matsuno Bilinear Transformation Method
 
* Yoshimasa matsuno Bilinear Transformation Method
* Jarmo Hietarinta: Introduction to the Hirota Bilinear Method, volume 638 of Lect. Notes Phys. New York: Springer-Verlag 2004.
+
* Hietarinta, J. 1997. “Introduction to the Hirota Bilinear Method.” In Integrability of Nonlinear Systems, edited by Y. Kosmann-Schwarzbach, B. Grammaticos, and K. M. Tamizhmani, 95–103. Lecture Notes in Physics 495. Springer Berlin Heidelberg. http://link.springer.com/chapter/10.1007/BFb0113694. http://arxiv.org/abs/solv-int/9708006
* [[2011년 books and articles]]
 
* http://library.nu/search?q=
 
* http://library.nu/search?q=
 
 
 
 
 
  
 
 
 
 
73번째 줄: 58번째 줄:
 
==expositions==
 
==expositions==
  
* Bilinear Formalism in Soliton TheoryJ. Satsuma http://www.springerlink.com/content/pv618enuumbm98bx/
+
* Satsuma, J. 2004. “Bilinear Formalism in Soliton Theory.” In Integrability of Nonlinear Systems, edited by Yvette Kosmann-Schwarzbach, K. M. Tamizhmani, and Basil Grammaticos, 251–268. Lecture Notes in Physics 638. Springer Berlin Heidelberg. http://link.springer.com/chapter/10.1007/978-3-540-40962-5_8
 
* [http://users.utu.fi/hietarin/Bangalore.pdf Hirota’s bilinear method and integrability] Jarmo Hietarinta, 2008
 
* [http://users.utu.fi/hietarin/Bangalore.pdf Hirota’s bilinear method and integrability] Jarmo Hietarinta, 2008
* Goldstein, P. P. 2007. “Hints on the Hirota Bilinear Method”. <em>Acta Physica Polonica A</em> 112 (12월 1): 1171. http://adsabs.harvard.edu/abs/2007AcPPA.112.1171G
+
* Goldstein, P. P. 2007. “Hints on the Hirota Bilinear Method.Acta Physica Polonica A 112 (December): 1171.
* [http://arxiv.org/abs/solv-int/9708006 Introduction to the Hirota bilinear method]  J. Hietarinta, 1997
 
 
 
 
 
 
 
 
 
 
 
==articles==
 
* http://www.ams.org/mathscinet
 
* http://www.zentralblatt-math.org/zmath/en/
 
* http://arxiv.org/
 
* http://www.pdf-search.org/
 
* http://pythagoras0.springnote.com/
 
* [http://math.berkeley.edu/%7Ereb/papers/index.html http://math.berkeley.edu/~reb/papers/index.html]
 
* http://dx.doi.org/
 
 
 
 
 
 
 
 
 
 
 
==question and answers(Math Overflow)==
 
 
 
* http://mathoverflow.net/search?q=
 
* http://mathoverflow.net/search?q=
 
 
 
 
 
 
 
 
 
 
 
==blogs==
 
 
 
*  구글 블로그 검색<br>
 
**  http://blogsearch.google.com/blogsearch?q=<br>
 
** http://blogsearch.google.com/blogsearch?q=
 
* http://ncatlab.org/nlab/show/HomePage
 
 
 
 
 
 
 
 
 
 
 
==experts on the field==
 
 
 
* http://arxiv.org/
 
 
 
 
 
 
 
 
 
  
==links==
 
  
* [http://detexify.kirelabs.org/classify.html Detexify2 - LaTeX symbol classifier]
 
* [http://pythagoras0.springnote.com/pages/1947378 수식표현 안내]
 
* [http://www.research.att.com/%7Enjas/sequences/index.html The On-Line Encyclopedia of Integer Sequences]
 
* http://functions.wolfram.com/
 
 
[[분류:integrable systems]]
 
[[분류:integrable systems]]
[[분류:math and physics]]
 
 
[[분류:math and physics]]
 
[[분류:math and physics]]

2013년 11월 18일 (월) 07:50 판

introduction

 

 

 

 

Advantages of the bilinear formalism:

  • Multisoliton solutions easy to construct.
  • The dependent variables are usually tau-functions, with good properties.
  • Natural for the Sato theory, which explains hierarchies of integrable equations (Jimbo and Miwa)
  • Suitable for classification: the bilinear form strongly restricts the freedom of changing dependent variables.

 

 

example

http://www.thehcmr.org/issue2_1/soliton.pdf

 


 

related items

 

 

계산 리소스

 

encyclopedia

 

 

books

 

expositions