"자연상수 e는 무리수이다"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
 
22번째 줄: 22번째 줄:
  
 
여기서 좌변은 자연수이고, 우변의 큰 괄호 안의 수는 자연수이므로, 우변의 나머지 부분
 
여기서 좌변은 자연수이고, 우변의 큰 괄호 안의 수는 자연수이므로, 우변의 나머지 부분
$$A=\frac{1}{p+1}+\frac{1}{(p+1)(p+2)}+\frac{1}{(p+1)(p+2)(p+3)}+\cdots$$
+
:<math>A=\frac{1}{p+1}+\frac{1}{(p+1)(p+2)}+\frac{1}{(p+1)(p+2)(p+3)}+\cdots</math>
 
도 정수여야 한다. 또한 이는 양수이므로, 이것은 자연수여야 한다.
 
도 정수여야 한다. 또한 이는 양수이므로, 이것은 자연수여야 한다.
  
29번째 줄: 29번째 줄:
  
 
에서, 우변은
 
에서, 우변은
:<math>\frac{1}{(p+i)}+\sum_{i = 1}^{\infty} \frac{1}{(p+i)(p+1+i)} = \frac{2}{p+1}</math> 이므로, <math>A < \frac{2}{p+1}<1</math>  이어야 한다. 그러나 이는 $A$가 자연수라는 사실에 모순이다.
+
:<math>\frac{1}{(p+i)}+\sum_{i = 1}^{\infty} \frac{1}{(p+i)(p+1+i)} = \frac{2}{p+1}</math> 이므로, <math>A < \frac{2}{p+1}<1</math>  이어야 한다. 그러나 이는 <math>A</math>가 자연수라는 사실에 모순이다.
  
  

2020년 11월 13일 (금) 10:12 기준 최신판

개요




증명

다음 식 \[e=\sum_{i = 0}^{\infty}\frac{1}{i!}\] 이 성립함을 받아들인다면, 고등학교 수학 수준으로 증명할 수 있다. 증명은 귀류법을 사용한다. (위 급수는 지수함수에 대한 테일러 전개를 이용하여 얻을 수 있다.)

결론을 부정하여 자연상수가 유리수라고 하고, 서로소인 두 자연수 \(p\) 와 \(q\) 에 대해 \(e=\sum_{i = 0}^{\infty}\frac{1}{i!} = \frac{q}{p}\) 라고 하자.

\(n> 3\) 이면 \(n! > n(n-1)\) 이므로, 다음이 성립한다 \[\frac{q}{p}=e=1+1+\sum_{i=2}^{\infty}\frac{1}{i!} <3 \label{esum}\] \(2 < e < 3\) 이므로, \(p>1\) 이다.

\ref{esum}의 양변에 \(p!\) 를 곱하면 다음을 얻는다. \[q(p-1)! = \big(p!+p!\cdots+p(p-1)+p+1 \big)+\frac{1}{p+1}+\frac{1}{(p+1)(p+2)}+\frac{1}{(p+1)(p+2)(p+3)}+\cdots\]

여기서 좌변은 자연수이고, 우변의 큰 괄호 안의 수는 자연수이므로, 우변의 나머지 부분 \[A=\frac{1}{p+1}+\frac{1}{(p+1)(p+2)}+\frac{1}{(p+1)(p+2)(p+3)}+\cdots\] 도 정수여야 한다. 또한 이는 양수이므로, 이것은 자연수여야 한다.

다음 부등식이 \[A=\frac{1}{p+1}+\frac{1}{(p+1)(p+2)}+\frac{1}{(p+1)(p+2)(p+3)}+\cdots < \frac{1}{p+1}+\frac{1}{(p+1)(p+2)}+\frac{1}{(p+2)(p+3)}+ \frac{1}{(p+3)(p+4)} +\cdots\]

에서, 우변은 \[\frac{1}{(p+i)}+\sum_{i = 1}^{\infty} \frac{1}{(p+i)(p+1+i)} = \frac{2}{p+1}\] 이므로, \(A < \frac{2}{p+1}<1\) 이어야 한다. 그러나 이는 \(A\)가 자연수라는 사실에 모순이다.


메모