"Maass forms"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
(피타고라스님이 이 페이지에 Maass_H_-_Lectures_on_Modular_Functions_of_One_Complex_Variable_(Rev._Ed.)(B0006C27TE)(Tata_Institute_of_Fundamental_Research_1964_1983)(268s).pdf 파일을 등록하셨습니다.)
2번째 줄: 2번째 줄:
  
 
* Hyperbolic distribution problems and half-integral weight Maass forms
 
* Hyperbolic distribution problems and half-integral weight Maass forms
 
+
* Automorphic forms correspond to representations that occur in L2(G/Γ). In the case when G is SL2, holomorphic modular forms correspond to (highest weight vectors of) discrete series representations of G, while Maass wave forms correspond to (spherical vectors of) continuous series representations of G.
 
 
  
 
 
 
 
52번째 줄: 51번째 줄:
  
 
* Henryk Iwaniek, Emmanuel Kowalski (2004). Analytic number theory
 
* Henryk Iwaniek, Emmanuel Kowalski (2004). Analytic number theory
 +
*  Lectures on modular functions of one complex variable (Tata Institute of Fundamental Research. Lectures on mathematics and physics. Mathematics, 29) <br>
 +
** Hans Maass, ([[5323613/attachments/3133467|pdf]])
 
* [[4909919|찾아볼 수학책]]<br>
 
* [[4909919|찾아볼 수학책]]<br>
 
* http://gigapedia.info/1/Iwaniek
 
* http://gigapedia.info/1/Iwaniek

2012년 7월 22일 (일) 03:32 판

introduction
  • Hyperbolic distribution problems and half-integral weight Maass forms
  • Automorphic forms correspond to representations that occur in L2(G/Γ). In the case when G is SL2, holomorphic modular forms correspond to (highest weight vectors of) discrete series representations of G, while Maass wave forms correspond to (spherical vectors of) continuous series representations of G.

 

Eisenstein series
  • z = x + iy in the upper half-plane
  • Re(s) > 1
  • definition
    \(E(z,s) ={1\over 2}\sum_{(m,n)=1}{y^s\over|mz+n|^{2s}}\)
  • Maass form
    \(\DeltaE(z,s)=-y^2\left(\frac{\partial^2}{\partial x^2}+\frac{\partial^2}{\partial y^2}\right)E(z,s) = s(1-s)E(z,s)\)
  • functional equation
    \(E^{*}(z,s) = \pi^{-s}\Gamma(s)\zeta(2s)E(z,s) \)
    \(E^{*}(z,s)=E^{*}(z,1-s)\)
  • a unique pole of residue 3/π at s = 1

 

 

Kloosterman sum

 

 

history

 

 

related items

 

 

books

 

 

encyclopedia

 

 

question and answers(Math Overflow)

 

 

blogs

 

 

articles

 

 

experts on the field

 

 

TeX