"Maass forms"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
imported>Pythagoras0
imported>Pythagoras0
7번째 줄: 7번째 줄:
  
 
==Eisenstein series==
 
==Eisenstein series==
 
+
* {{수학노트|url=실해석적_아이젠슈타인_급수}}
* z = x + iy in the upper half-plane
 
* Re(s) > 1
 
*  definition<br><math>E(z,s) ={1\over 2}\sum_{(m,n)=1}{y^s\over|mz+n|^{2s}}</math><br>
 
*  Maass form<br><math>\Delta E(z,s)=-y^2\left(\frac{\partial^2}{\partial x^2}+\frac{\partial^2}{\partial y^2}\right)E(z,s) = s(1-s)E(z,s)</math><br>
 
*  functional equation<br><math>E^{*}(z,s) = \pi^{-s}\Gamma(s)\zeta(2s)E(z,s) </math><br><math>E^{*}(z,s)=E^{*}(z,1-s)</math><br>
 
* a unique pole of residue 3/π at s = 1
 
 
 
 
 
  
 
 
 
 

2013년 2월 2일 (토) 13:54 판

introduction

  • Hyperbolic distribution problems and half-integral weight Maass forms
  • Automorphic forms correspond to representations that occur in L2(G/Γ). In the case when G is SL2, holomorphic modular forms correspond to (highest weight vectors of) discrete series representations of G, while Maass wave forms correspond to (spherical vectors of) continuous series representations of G.

 

Eisenstein series

 

Kloosterman sum

 

 

history

 

 

related items

 

 

books

 

 

encyclopedia

 

 

question and answers(Math Overflow)