"Maass forms"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
imported>Pythagoras0 |
imported>Pythagoras0 |
||
12번째 줄: | 12번째 줄: | ||
==Kloosterman sum== | ==Kloosterman sum== | ||
− | + | * {{수학노트|url=클루스터만_합}} | |
− | * | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
54번째 줄: | 37번째 줄: | ||
* http://en.wikipedia.org/wiki/Kronecker_limit_formula | * http://en.wikipedia.org/wiki/Kronecker_limit_formula | ||
* http://en.wikipedia.org/wiki/Real_analytic_Eisenstein_series | * http://en.wikipedia.org/wiki/Real_analytic_Eisenstein_series | ||
− | |||
− | |||
− | |||
==question and answers(Math Overflow)== | ==question and answers(Math Overflow)== | ||
* http://mathoverflow.net/questions/52744/what-is-the-relationship-between-modular-forms-and-maass-forms | * http://mathoverflow.net/questions/52744/what-is-the-relationship-between-modular-forms-and-maass-forms | ||
− | + | ||
[[분류:개인노트]] | [[분류:개인노트]] |
2013년 3월 28일 (목) 15:43 판
introduction
- Hyperbolic distribution problems and half-integral weight Maass forms
- Automorphic forms correspond to representations that occur in $L_2(G/\Gamma)$. In the case when $G$ is $SL_2$, holomorphic modular forms correspond to (highest weight vectors of) discrete series representations of $G$, while Maass wave forms correspond to (spherical vectors of) continuous series representations of G.
Eisenstein series
Kloosterman sum
books
- Henryk Iwaniek, Emmanuel Kowalski (2004). Analytic number theory
- Lectures on modular functions of one complex variable (Tata Institute of Fundamental Research. Lectures on mathematics and physics. Mathematics, 29)
- Hans Maass, (pdf)
encyclopedia
- http://en.wikipedia.org/wiki/Kronecker_limit_formula
- http://en.wikipedia.org/wiki/Real_analytic_Eisenstein_series