"Maass forms"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
imported>Pythagoras0
imported>Pythagoras0
70번째 줄: 70번째 줄:
 
* http://www.math.chalmers.se/~sj/forskning/level11_2a.pdf
 
* http://www.math.chalmers.se/~sj/forskning/level11_2a.pdf
 
* http://www.ijpam.eu/contents/2009-54-2/12/12.pdf
 
* http://www.ijpam.eu/contents/2009-54-2/12/12.pdf
 +
* https://mathoverflow.net/questions/22908/does-anyone-want-a-pretty-maass-form
  
 
==encyclopedia==
 
==encyclopedia==

2019년 10월 7일 (월) 00:17 판

introduction

  • Hyperbolic distribution problems and half-integral weight Maass forms
  • Automorphic forms correspond to representations that occur in $L_2(\Gamma\backslash G)$.
  • In the case when $G$ is $SL(2,\mathbb{R})$
    • holomorphic modular forms correspond to (highest weight vectors of) discrete series representations of $G$
    • Maass wave forms correspond to (spherical vectors of) continuous series representations of G.

 

definition

  • A Maass (wave) form = continuous complex-valued function f of τ = x + iy in the upper half plane satisfying the following conditions:
    • f is invariant under the action of the group SL2(Z) on the upper half plane.
    • f is an eigenvector of the Laplacian operator \(\Delta=-y^2\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right)\)
    • f is of at most polynomial growth at cusps of SL2(Z).


two types of Maass forms

  • square integrable Maass forms ~ discrete spectrum
  • Eisenstein series ~ continuous spectrum


fourier expansion

  • $f(z+1)=f(z)$ and $\Delta f=\lambda f$ where $\lambda = s(1-s)$ and $\Re s \geq 1/2$ imply

$$ f(x+iy)=\sum_{n\in \mathbb{Z}}a_n \sqrt{y}K_{s-1/2}(2\pi |n| y) e^{2\pi i n x} $$ where $K_{\nu}$ is the modified Bessel function of the second kind

  • under the assumption that $f(x+iy)=f(-x+iy)$, we get

$$ f(x+iy)=\sum_{n=1}^{\infty}a_n \sqrt{y}K_{s-1/2}(2\pi n y) \cos (2\pi i n x) $$


examples

Eisenstein series


Maass-Poincare series

  • Hejhal
  • real analytic eigenfunction of the Laplacian with known singularities at \(i\infty\)

 

Kloosterman sum

 

related items

 

books

  • Henryk Iwaniek, Emmanuel Kowalski (2004). Analytic number theory
  • Lectures on modular functions of one complex variable (Tata Institute of Fundamental Research. Lectures on mathematics and physics. Mathematics, 29) 
    • Hans Maass, (pdf)


computational resource

encyclopedia


question and answers(Math Overflow)


expositions


articles

  • Farrell Brumley, Simon Marshall, Lower bounds for Maass forms on semisimple groups, arXiv:1604.02019 [math.NT], April 07 2016, http://arxiv.org/abs/1604.02019
  • Strömberg, Fredrik. “Computation of Maass Waveforms with Nontrivial Multiplier Systems.” Mathematics of Computation 77, no. 264 (2008): 2375–2416. doi:10.1090/S0025-5718-08-02129-7.
  • Booker, Andrew R., Andreas Strömbergsson, and Akshay Venkatesh. “Effective Computation of Maass Cusp Forms.” International Mathematics Research Notices 2006 (January 1, 2006): 71281. doi:10.1155/IMRN/2006/71281.