"Dessin d'enfant"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
imported>Pythagoras0 |
imported>Pythagoras0 |
||
18번째 줄: | 18번째 줄: | ||
* Robalo, [https://dspace.ist.utl.pt/bitstream/2295/575330/1/dissertacao.pdf Galois Theory towards Dessins d'Enfants], masters thesis | * Robalo, [https://dspace.ist.utl.pt/bitstream/2295/575330/1/dissertacao.pdf Galois Theory towards Dessins d'Enfants], masters thesis | ||
* [http://www.math.purdue.edu/~egoins/notes/reuf4.pdf Introduction to Dessins d'Enfants], undergraduate research program | * [http://www.math.purdue.edu/~egoins/notes/reuf4.pdf Introduction to Dessins d'Enfants], undergraduate research program | ||
+ | |||
+ | |||
+ | ==articles== | ||
+ | * Kazarian, Maxim, and Peter Zograf. 2014. “Virasoro Constraints and Topological Recursion for Grothendieck’s Dessin Counting.” arXiv:1406.5976 [math], June. http://arxiv.org/abs/1406.5976. | ||
+ | |||
2014년 6월 24일 (화) 07:32 판
memo
- http://www.neverendingbooks.org/index.php/kleins-dessins-denfant-and-the-buckyball.html
- http://www.neverendingbooks.org/index.php/permutation-representations-of-monodromy-groups.html
encyclopedia
expositions
- Planat, Michel. “Drawing Quantum Contextuality with ‘Dessins D’enfants’.” arXiv:1404.6986 [math-Ph, Physics:quant-Ph], April 28, 2014. http://arxiv.org/abs/1404.6986.
- Jones, Dessins d'enfants: bipartite maps and Galois groups
- Eriksson, Galois theory of Covers
- Robalo, Galois Theory towards Dessins d'Enfants, masters thesis
- Introduction to Dessins d'Enfants, undergraduate research program
articles
- Kazarian, Maxim, and Peter Zograf. 2014. “Virasoro Constraints and Topological Recursion for Grothendieck’s Dessin Counting.” arXiv:1406.5976 [math], June. http://arxiv.org/abs/1406.5976.
books
- Guralnick, Robert M., and John Shareshian. 2007. Symmetric and Alternating Groups as Monodromy Groups of Riemann Surfaces I: Generic Covers and Covers with Many Branch Points. American Mathematical Soc.
- Schneps, Leila, ed. 1994. The Grothendieck Theory of Dessins D’enfants. Vol. 200. London Mathematical Society Lecture Note Series. Cambridge: Cambridge University Press. http://www.ams.org/mathscinet-getitem?mr=1305390.