"Affine sl(2)"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
imported>Pythagoras0
imported>Pythagoras0
74번째 줄: 74번째 줄:
  
 
==explicit construction==
 
==explicit construction==
 +
* start with a semisimple Lie algebra $\mathfrak{g}$ with invariant form $\langle \cdot,\cdot\rangle $,
 +
* make a vector space from it,
 +
* Construct a Loop algbera $\mathfrak{g}\otimes\mathbb{C}[t,t^{-1}]$
 +
* Let $\alpha(m)=\alpha\otimes t^m$,
 +
* Add a central element to get a central extension $\mathfrak{g}\otimes\mathbb{C}[t,t^{-1}]\oplus\mathbb{C}c$, and give a bracket $$[E(m),F(n)]=H\otimes t^{m+n}+m\delta_{m,-n}c$$
 +
$$[H(m),E(n)]=2E\otimes t^{m+n}$$
 +
$$[H(m),F(n)]=-2F\otimes t^{m+n}$$
 +
$$[E(m),E(n)]=[F(m),F(n)]=0$$
 +
$$\langle c,\mathfrak{g}\otimes\mathbb{C}[t,t^{-1}]\oplus\mathbb{C}c\rangle =0$$
 +
*  Add a derivation $d$, $d=t\frac{d}{dt}$ to get $\mathfrak{g}\otimes\mathbb{C}[t,t^{-1}]\oplus\mathbb{C}c \oplus\mathbb{C}d$
 +
$$d(\alpha(n))=n\alpha(n)$$
 +
$$d(c)=0$$
 +
$$\langle c,d\rangle =0$,
 +
*  Define a Lie bracket,$[d,x]=d(x)$,
  
* start with a semisimple Lie algebra <math>\mathfrak{g}</math> with invariant form <math><\cdot,\cdot></math><br>
+
   
* make a vector space from it<br>
 
* Construct a Loop algbera<br><math>\mathfrak{g}\otimes\mathbb{C}[t,t^{-1}]</math><br><math>\alpha(m)=\alpha\otimes t^m</math><br>
 
* Add a central element to get a central extension and give a bracket<br><math>\mathfrak{g}\otimes\mathbb{C}[t,t^{-1}]\oplus\mathbb{C}c</math><br><math>[E(m),F(n)]=H\otimes t^{m+n}+m\delta_{m,-n}c</math><br><math>[H(m),E(n)]=2E\otimes t^{m+n}</math><br><math>[H(m),F(n)]=-2F\otimes t^{m+n}</math><br><math>[E(m),E(n)]=[F(m),F(n)]=0</math><br><math><c,\mathfrak{g}\otimes\mathbb{C}[t,t^{-1}]\oplus\mathbb{C}c>=0</math><br>
 
* Add a derivation <math>d</math><br><math>d=t\frac{d}{dt}</math><br><math>\mathfrak{g}\otimes\mathbb{C}[t,t^{-1}]\oplus\mathbb{C}c \oplus\mathbb{C}d</math><br><math>d(\alpha(n))=n\alpha(n)</math><br><math>d(c)=0</math><br><math><c,d>=0</math><br>
 
*  Define a Lie bracket<br><math>[d,x]=d(x)</math><br>
 
 
 
 
 
  
 
 
 
 

2013년 5월 20일 (월) 13:33 판

introduction

 

construction from semisimple Lie algebra

  • this is borrowed from affine Kac-Moody algebra entry
  • Let \(\mathfrak{g}\) be a semisimple Lie algebra with root system \(\Phi\) and the invariant form \(<\cdot,\cdot>\)
  • say \(\mathfrak{g}=A_1\),  \(\Phi=\{\alpha,-\alpha\}\)
  • Cartan matrix
    \(\mathbf{A} = \begin{pmatrix} 2 \end{pmatrix}\)
  • Find the highest root  \(\alpha\)
  • Add another simple root \(\alpha_0\) to the root system \(\Phi\) which is \(\alpha_0=-\alpha\), but we regard this as an independent one now.
  • Construct a new Cartan matrix
    \(A' = \begin{pmatrix} 2 & -2 \\ -2 & 2 \end{pmatrix}\)
  • Note that this matrix has rank 1 since \((1,1)\) belongs to the null space
  • construct a Lie algebra from the new Cartan matrix \(A'\)
  • Add a outer derivation\(d=-l_0\) to compensate the degeneracy of the Cartan matrix
    \(\begin{pmatrix} 2 & -2 & 1\\ -2 & 2 &0 \\ 1 &0 & 0 \end{pmatrix}\)

 

 

basic quantities

  • $a_i=1$
  • $c_i=a_i^{\vee}=1$
  • $a_{ij}$
  • coxeter number 2
  • dual Coxeter number 2
  • Weyl vector

 

 

root systems

  • \(\Phi=\{\alpha+n\delta|\alpha\in\Phi^{0},n\in\mathbb{Z}\}\cup \{n\delta|n\in\mathbb{Z},n\neq 0\}\)
  • real roots
    • \(\{\alpha+n\delta|\alpha\in\Phi^{0},n\in\mathbb{Z}\}\)
  • imaginary roots   
    • \(\{n\delta|n\in\mathbb{Z},n\neq 0\}\)
    • \(\delta=\alpha_0+\alpha_1\)
  • simple roots
    • \(\alpha_0,\alpha_1\)
  • positive roots
    • \(\Phi^{+}=\{\alpha+n\delta|\alpha\in\Phi^{0},n>0\}\cup (\Phi^{0})^{+}\cup \{n\delta|n\in\mathbb{Z},n> 0\}\)

 

 

fixing a Cartan subalgebra and its dual

  • H is a 3-dimensional space
  • basis of the Cartan subalgebra H (this defines C and l_0 also)
    \(h_0=C-h_1\)
    \(h_1\)
    \(d=-l_0\)
  • basis of dual Cartan algebra
    \(\omega_0,\alpha_0,\alpha_1\)
  • dual basis for H
    \(\omega_0,\omega_1=\omega_0+\frac{1}{2}\alpha_1,\delta=\alpha_0+\alpha_1\)
  • Weyl vector
    \(\rho=\omega_0+\omega_1\)
  • pairing
    \(\alpha_0(h_0)=2\)
    \(\alpha_0(h_1)=-2\)
    \(\alpha_0(d)=1\)
    \(\alpha_1(h_0)=-2\)
    \(\alpha_1(h_1)=2\)
    \(\alpha_1(d)=0\)
    \(\omega_0(h_0)=1\)
    \(\omega_0(h_1)=0\)
    \(\omega_0(d)=0\)

 

 

killing form

  • invariant symmetric non-deg bilinear forms, $\langle h_i,h_j\rangle =A_{ij}$, $\langle h_0,d\rangle =1$, $\langle h_1,d\rangle =0$, $\langle d,d\rangle =0$,
  • with centers (note that $C=h_0+h_1$), $\langle C,h_0\rangle =0$, $\langle C,h_1\rangle =0$, $\langle C,d\rangle =1$,


 

explicit construction

  • start with a semisimple Lie algebra $\mathfrak{g}$ with invariant form $\langle \cdot,\cdot\rangle $,
  • make a vector space from it,
  • Construct a Loop algbera $\mathfrak{g}\otimes\mathbb{C}[t,t^{-1}]$
  • Let $\alpha(m)=\alpha\otimes t^m$,
  • Add a central element to get a central extension $\mathfrak{g}\otimes\mathbb{C}[t,t^{-1}]\oplus\mathbb{C}c$, and give a bracket $$[E(m),F(n)]=H\otimes t^{m+n}+m\delta_{m,-n}c$$

$$[H(m),E(n)]=2E\otimes t^{m+n}$$ $$[H(m),F(n)]=-2F\otimes t^{m+n}$$ $$[E(m),E(n)]=[F(m),F(n)]=0$$ $$\langle c,\mathfrak{g}\otimes\mathbb{C}[t,t^{-1}]\oplus\mathbb{C}c\rangle =0$$

  • Add a derivation $d$, $d=t\frac{d}{dt}$ to get $\mathfrak{g}\otimes\mathbb{C}[t,t^{-1}]\oplus\mathbb{C}c \oplus\mathbb{C}d$

$$d(\alpha(n))=n\alpha(n)$$ $$d(c)=0$$ $$\langle c,d\rangle =0$,

  • Define a Lie bracket,$[d,x]=d(x)$,


 

denominator formula

 

 

 

level k highest weight representation

  • integrable highest weight
    \(\lambda=\lambda_{0}\omega_0+\lambda_{1}\omega_1\), \(\lambda_{i}\in\mathbb{N}\)
  • level
    \(k=\lambda_{0}+\lambda_{1}\in\mathbb{N}\)
  • therefore \(\lambda_{0}\in\{0,1,\cdots,k\}\)

 

 

central charge

  • central charge (depends on the level only)
    \(c_{\lambda}=\frac{k}{k+h^{\vee}}\text{dim }\mathfrak{\bar{g}}\)
  • conformal weight
    \(h_{\lambda}=\frac{(\lambda|\lambda+2\rho)}{2(k+h^{\vee})}\)
  • definition of conformal anomaly
    \(m_{\Lambda}=\frac{(\Lambda+\rho)^2}{2(k+h^{\vee})}-\frac{\rho^2}{2h^{\vee}}\)
  • strange formula
    \(\frac{<\rho,\rho>}{2h^{\vee}}=\frac{\operatorname{dim}\mathfrak{g}}{24}\)
  • very strange formula
  • conformal anomaly 
    \(m_{\Lambda}=\frac{(\Lambda+\rho)^2}{2(k+h^{\vee})}-\frac{\rho^2}{2h^{\vee}}=h_{\lambda}-\frac{c_{\lambda}}{24}\)

 

 

 

vertex operator construction

 

 

 

related items

 

computational resource

 

books

  • Gannon 190p, 193p, 196p,371p

 

articles

  • Lepowsky, James, and Robert Lee Wilson. 1978. “Construction of the affine Lie algebraA 1 (1)”. Communications in Mathematical Physics 62 (1): 43-53. doi:10.1007/BF01940329.