"Parthasarathy-Ranga Rao-Varadarajan conjecture"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
imported>Pythagoras0
(새 문서: ==introduction== * PRV conjecture * notations ** $\nu$ integral weight ** $\overline{\nu}$ the dominant integral weight of $W\cdot \nu$ ** $V(\overline{\nu})$ highest weight represen...)
 
imported>Pythagoras0
6번째 줄: 6번째 줄:
 
** $V(\overline{\nu})$ highest weight representation
 
** $V(\overline{\nu})$ highest weight representation
 
* $\lambda,\mu$ dominant integral weights and $w\in W$, the module $V(\overline{\lambda+w\mu})$ occurs with multiplicity at least one in $V(\lambda)\otimes V(\mu)$  
 
* $\lambda,\mu$ dominant integral weights and $w\in W$, the module $V(\overline{\lambda+w\mu})$ occurs with multiplicity at least one in $V(\lambda)\otimes V(\mu)$  
 +
 +
 +
==expositions==
 +
* Khare, Apoorva. 2012. “Representations of Complex Semi-simple Lie Groups and Lie Algebras.” arXiv:1208.0416 (August 2). http://arxiv.org/abs/1208.0416.
 +
  
  
 
==articles==
 
==articles==
 
* Kumar, Shrawan. 1988. “Proof of the Parthasarathy-Ranga Rao-Varadarajan Conjecture.” Inventiones Mathematicae 93 (1): 117–130. doi:10.1007/BF01393689. http://link.springer.com/article/10.1007%2FBF01393689
 
* Kumar, Shrawan. 1988. “Proof of the Parthasarathy-Ranga Rao-Varadarajan Conjecture.” Inventiones Mathematicae 93 (1): 117–130. doi:10.1007/BF01393689. http://link.springer.com/article/10.1007%2FBF01393689

2013년 4월 10일 (수) 06:48 판

introduction

  • PRV conjecture
  • notations
    • $\nu$ integral weight
    • $\overline{\nu}$ the dominant integral weight of $W\cdot \nu$
    • $V(\overline{\nu})$ highest weight representation
  • $\lambda,\mu$ dominant integral weights and $w\in W$, the module $V(\overline{\lambda+w\mu})$ occurs with multiplicity at least one in $V(\lambda)\otimes V(\mu)$


expositions

  • Khare, Apoorva. 2012. “Representations of Complex Semi-simple Lie Groups and Lie Algebras.” arXiv:1208.0416 (August 2). http://arxiv.org/abs/1208.0416.


articles